SAP SuccessFactors Employee Central Deutsch – Englisch Übersetzung

June 5, 2020

Die Kursunterlagen und Zertifizierungen für EC sind auf Englisch, aber oft verwenden die Benutzer in meinem Fall Employee Central auf Deutsch. Daher hoffe ich dass diese Übersetzung hilfreich ist.

Employee Files:

English – Employee Files Deutsch – Personaldaten
Automatic Manager Transfer Automatische Übertragung
Benefits Admin Overview Zusatzleistungen-Admin-Übersicht
Configure Charts for Key Figures in Compensation Portlet Diagramme für Schlüsselzahlen in Vergütungs-Portlet konfigurieren
Configure Company Structure Overview Übersicht über Firmenstruktur konfigurieren
Configure People Profile Personenprofil konfigurieren
Configure Sections for Benefits Abschnitt für Zusatzleistungen konfigurieren
Customize Employee Central Employee Central anpassen
Document Generation – Generate Document Dokumentgenerierung – Dokument generieren
Document Generation – Manage Document Template Dokumentgenerierung – Dokumentvorlage verwalten
Document Generation – Manage Document Template Mapping Dokumentgenerierung – Dokumentvorlagenzuordnung verwalten
Document Generation – Mass Generate Documents Dokumentgenerierung – Massengenerierung von Dokumenten
Employee Delta Export Mitarbeiteränderungen exportieren
Employees Associated With Invalid HR Data Mit ungültigen HR-Daten verknüpfte Mitarbeiter
Import Foundation Data Grundlagendaten importieren
Import Translations Übersetzungen importieren
Import and Export Data Daten importieren und exportieren
Invalid User in Dynamic Role Ungültiger Benutzer in dynamischer Rolle
Manage Badges Abzeichen verwalten
Manage Benefit Dependencies Zusatzleistungs-Abhängigkeiten verwalten
Manage Configuration UI  Konfigurations-UI verwalten
Manage Data  Daten verwalten
Manage Employee Central Settings Einstellungen für Employee Central verwalten
Manage Mass Changes Massenänderungen verwalten
Manage Mass Changes for Metadata Objects Massenänderungen für Metadaten-Objekte verwalten
Manage Off Cycle Event Batch Groups Außerzyklische Ereignisstapelgruppen verwalten
Manage Organization, Pay and Job Structures Strukturen für Organisation, Gehalt und Stellen verwalten
Manage Positions Planstellen verwalten
Manage Sequence Reihenfolge verwalten
Manage Talent Card Talentkarte verwalten
Manage Workflow Email Configuration Workflow-E-Mail-Konfiguration verwalten
Manage Workflow Groups Workflowgruppen verwalten
Manage Workflow Requests Workflowanfragen verwalten
Manage workflow requests with invalid approvers Workflowanfragen mit ungültigen Genehmigern verwalten
Monitor Job Auftrag überwachen
Position Management Settings Einstellungen für Planstellenmanagement
Search Data Suchdaten

Company Files:

English – Company Files Deutsch – Personaldaten
API Center API-Center
Audit Log Settings Audit Log Settings
Business Rule Execution Log Protokoll der Geschäftsregelausführung
Check Tool Check Tool
Company Dictionary Firmenwörterbuch
Company System and Logo Settings Unternehmensweite System- und Logo-Einstellungen
Configure Business Rules Geschäftsregeln konfigurieren
Configure Change Engine Änderungs-Engine konfigurieren
Configure Custom Navigation Benutzerdefinierte Navigation konfigurieren
Configure Job Profile Acknowledgement Settings Einstellungen für Stellenprofil-Kenntnisnahme konfigurieren
Configure Object Definitions Objektdefinitionen konfigurieren
Cross Talent Feature Settings Einstellungen für Cross-Talent-Funktion
Data Privacy Statement Datenschutzerklärung
Data Retention Management Datenaufbewahrungsmanagement
E-Mail Notification Templates Settings Einstellungen für E-Mail-Benachrichtigungsvorlagen
Event Notification Audit Log Auditprotokoll für Ereignisbenachrichtigungen
Event Notification Subscription Abonnement von Ereignisbenachrichtigungen
Execution Manager Dashboard Ausführungsmanager-Dashboard
Extension Center Erweiterungscenter
Extensions Erweiterungen
Form Template Settings Formularvorlageneinstellungen
Instance Synchronization Monitor Tool Instanzsynchronisierungstool
Instance Synchronization Wizard Instanzensynchronisierung-Assistent
Integration Center Integrations-Center
Intelligent Services Center (ISC) Center für intelligente Dienste (ISC)
Job Profile Acknowledgement Report Bericht „Stellenprofil-Kenntnisnahme“
Legal Scan Library Wortwahlscanner-Bibliothek
Legal Scan Library Import Wortwahlscanner-Bibliotheksimport
Manage API Option Profile API-Optionsprofil verwalten
Manage Action Search Aktionssuche verwalten
Manage Asserting Parties Geschäftskonfiguration verwalten
Manage Business Configuration Geschäftskonfiguration verwalten
Manage Documents Dokumente verwalten
Manage Form Label Translations Übersetzungen der Formularbezeichnungen verwalten
Manage Home Page  Startseite verwalten
Manage Job Profile Content Inhalt des Stellenprofils verwalten
Manage Job Profile Content Import/Export Import/Export von Stellenprofilinhalt verwalten
Manage Job Profile Templates Stellenprofilvorlagen verwalten
Manage Job Profiles Stellenprofile verwalten
Manage Languages Sprachen verwalten
Manage OAuth2 Client Applications OAuth2-Client-Anwendungen verwalten
Manage Route maps Weiterleitungslisten verwalten
Manage Support Access Support-Zugriff verwalten
Manage Sync Packages
Synchronisierungspakete verwalten
Matrix Grid Rating Scales Matrix-Bewertungsskalen
Modify Form Route Map Weiterleitungslisten verwalten
Notification Configuration Benachrichtigungskonfiguration
OData API Audit Log OData-API-Auditprotokoll
OData API Data Dictionary OData-API-Datenverzeichnis
OData API Metadata Refresh and Export Aktualisierung und Export der OData-API-Metadaten
Org Chart Configuration Organigrammkonfiguration
Outbound Trust Manager Outbound Trust Manager
PGP Key Management PGP-Schlüsselverwaltung
Password & Login Policy Settings Einstellungen für Kennwort- und Anmelderichtlinie
Payroll Control Center Configuration
Konfiguration des Gehaltsabrechnungs-Controlcenters
Performance Management Date Range Datumsbereich für Leistungsmanagement
Picklist Center Auswahllisten-Center
Picklist Mappings Auswahllistenzuordnungen
Platform Feature Settings Einstellungen für Plattformfunktion
Purge Request Monitor Löschanfragen-Monitor
Rating Scales  Bewertungsskalen
Release Center Versionscenter
SAP System Configuration SAP-Systemkonfiguration
SFAPI Audit log SFAPI-Auditprotokoll
SFAPI Data Dictionary SFAPI-Datenverzeichnis
SFAPI Metering Details SFAPI-Auswertungsdetails
Set DPCS Statement Status Status der Datenschutzerklärung festlegen
Text Replacement
Textersetzungen
Theme Manager Designmanager
Upload Company Logo Firmenlogo hochladen
Web Assistant Settings Einstellungen für Web-Assistent

What is the SAP Activate Methodology?

May 31, 2020

Sap Activate Methodology for SuccessFactors

Summary:

SAP Activate Methodology is an on-site SAP activation method that supports project management teams in their privately managed cloud environments. SAP promotes it as an innovative adoption framework that accelerates the process of implementing digitized technologies and business processes through guided configuration, accelerator templates and documents. The locally activated SAP method supports the project management team in their private cloud environment and helps them develop and deploy new business applications and services.

The SAP Activate method is the first of its kind and thus represents a next-generation adaptation framework that can be used in all phases of the SAP lifecycle. The customer has access to accelerators such as examples and templates to facilitate the implementation of a project. In addition to exploring company-specific business scenarios and proposing the most relevant solutions, it also uses proven SAP procedures.

SAP Activate Methodology is the next step in the development of SAP Activate Technology, a new approach to project management. SAP’s on-site activation method supports project management teams in a privately managed cloud environment and supports them from the initial planning and implementation to the continuous improvement of the SAP solution.

SAP Activate Methodology is promoted by SAP as an innovative adoption framework that accelerates Sap Successfactors and S/4 Hana implementation by executing digitized technologies and business processes through a guided configuration of accelerator templates and documents. The SAP Activate method is the first of its kind and thus represents a next-generation adaptation framework that can be used in all phases of the SAP lifecycle.

SAP Activate leverages SAP’s best practices to explore company-specific business scenarios and propose the most relevant solutions.

Customers have access to accelerators such as examples and templates to facilitate the implementation of the project.

SAP has introduced an online information hub that offers SAP Activate, an easy-to-use solution for customers of SAP software and services.

In the first phase, discover the solutions and capabilities, define the adoption strategy, understand the business needs and requirements of the SAP SuccessFactors business process and determine their implementation.

When introducing a new system, it is important to have a plan from the outset to ensure that the project stays on track. In the preparatory phase, you will need to draw up a project charter, draw up plans and objectives, and pool the resources required for your project.

SAP Activate is based on the agile SCRUM framework. The Scaled Agile Framework is a framework that provides the necessary structure, governance and transparency for the development and implementation of agile projects. In the agile SCRUM framework, a number of tools are available, such as the SCRUM App Engine, which can help provide the necessary structures, governance, transparency, etc.

The Scaled Agile Framework includes a set of principles, processes and best practices that help large organizations develop agile methods such as lean and scrum more quickly and deliver high quality services and products. SAFe offers integrated approaches and principles that support entrepreneurial agility, as well as a simple and easy experience for software development teams. SAFE has always maintained the focus of the Scaled Agile Framework on build quality and behaves similarly to other agile methods such as lean and scrum.

When it comes to implementing complex products and projects that require complex design, design thinking, development, testing and implementation, teams that focus on implementation are reaching their limits. For this reason, many companies are looking for scaling methods that work effectively at the team level. Agile practices and a team of highly qualified and motivated employees who can apply agile practices such as design and thinking.

Safe is based on the conception, design thinking, development, testing and implementation of agile practices. But how do you know that the best fit for your business fits well with the agile approach of SAP ACITVATE and Scaled Agile Framework?

With the use of SAP ACITVATE, business users and functional experts can create automated business processes and streamlined automation at a significantly accelerated pace, enabling the benefits of an SAP application to be realized faster and at the same time increasing efficiency and quality.

Cloud First MindsetThe Five Golden Rules

Rule 1. Foster cloud principals

Rule 2. Usage of SAP Best Practices – how-to Fit-to-Standard

Rule 3. Cloud Like Integrations – white listed APs preferred

Rule 4. Cloud Like Extentions

Rule 5. Make your choices transparent 

SAP Activate has 6 phases:

  1. Discover:  determine value and define capabilities
  2. Prepare: Initial planning and setup environment
  3. Explore: Business Scenarios, Fit to Standard (Fit-Gap) analysis, Integration analysis
  4. Realize: incrementally build and test
  5. Deploy: cutover and move to production
  6. Run: operations and support, change management, continuous improvment

 

  1. Discover Phase:

In the following link you can explore the SAP Active phases of the Successfactors implementation in an SAP Successfactors project. This also allows the team to define the architecture of the target technology and define the implementation strategy. The project team can also discover the capabilities of the SAP Successfactors solutions to better understand the challenges of implementing it in the context of a large, multi-tenant enterprise environment.

2. Prepare Phase:

In this phase, the tasks and responsibilities of the project team are also defined and the reporting and monitoring of project progress is completed. Project standards and governance within the organization are defined

3. Explore Phase:

Here, the business user and the SAP partner consulting company agree on the configurable objects required for the company.  In this phase, business users explore standard business processes known as fit-for-standard, such as the hiring, and retirement shown in Successfactors. Sample data of the fictitious company is also available to enable the user to perform an end-to-end process to assess how closely the standard solution matches the business needs of the company.

Other important activities in this phase include the exchange of data templates with the business user in MS Excel so that he/she can start processing clean, correct and comprehensive master data to load them into the Successfactors system. In addition, a full fit-for-gap exercise will take place during the phase to fill gaps that cannot be provided by the standard and Successfactors. In such cases, the fit-for-gap strategy decides whether to add remedies for the identified gaps.

4. Realize Phase:

In this phase, the business scenarios and processes identified in the previous phase (discovery phase) are gradually developed, tested, validated and tested. Master data is loaded into the SuccessFactors system after it has been checked and confirmed to ensure accuracy and completeness. A special focus is on the people and process teams working on these tests.

Tailor-made developed objects are also tested during the implementation phase and end-user training is planned so that relevant end-users can be involved at the right time. Important business users are trained to become trainers.

5. Deploy Phase:

In this phase, the end-user training is conducted by a master trainer and the company switches from a legacy system HR Master Data System to SuccessFactors. Critical cutover activities include preparing the SuccessFacotrs production system for the final upload of master data, uploading cutovers of structural and employee , closing the gap between end users and business users during the implementation phase, and validating their knowledge of the new system.

Change management activities culminate in stakeholders focusing on ensuring that the transition to Successfactors is accepted and runs smoothly. Business users also play a crucial role in ensuring trouble-free system by completing the process of quickly and comprehensively solving pending problems. A dedicated IT and SAP helpdesk to solve such problems contributes significantly to the smooth functioning of Successfactors. During this phase, the Successfactors system will be stabilized to ensure that any problems, errors and input errors are corrected quickly.

6. Run Phase:

This is the litmus test that confirms the correct and reliable functioning of business processes

11 Workstreams:

  1. Project Management
  2. Customer Team Enablement
  3. Solution Adoption
  4. Technical Architecture and Infrastructure
  5. Design and Configuration
  6. Data Management
  7. Integration
  8. Extensibility
  9. Analytics
  10. Testing
  11. Operations and Support

Sap Methodologies Jam Group

 

 

List of Grassroot Media Organisations Used by Prince Harry and Meghan Markle Mountbatten-Windsor Sussexroyal.com

January 12, 2020

Meghan & Harry are developing a new communication channel. They have defined the framework of their media channels to be used in the future.

RoyalRotaSystemGrassrootJournalism

Grassroot Media Organisations:

How they are defining grassroot media is still open. It is a term that had traction a few years ago but since then has not been used widely. Grassroot media could be citizen journalism which is also know as  public journalism, participatory journalism, democratic journalism, guerrilla journalism, or street journalism.

People Voice Media

The media organisations have yet to be defined. One potential candidate could be People Voice Media, United Kingdom.

Instagram accounts

On their instagram @sussexroyal account they are following one account since the beginning of January 2020: Good News Movement @goodnews_movement founded by @michellemfigueroa(Boston).
They plan to follow a new account each month. Reference (Daily Mail)

 

Young up-and-coming journalists:

It will show in the coming months who will qualify for this category. So far I have seen Caroline Halleman covering this topic quite extensively for the Town & Country Magazine (USA) which is owned by Hearst.

Specialist media:

 

Credible meida outlets:

 

Own offical channels:

Their own official channel sussexroyal.com was created by Article an agency in Canada (Founder: Ryan Fox).

Instagram is their official channel which is owned by Facebook (Mark Zuckerberg).

Megxit – Result of Negotiations win-lose (Meghan/Harry) or lose-lose (Meghan/Harry)?

According to the official speech of Prince Harry :

The Royal Family

The Royal Family is using twitter: @RoyalFamily

Official Statements by the Sovereign (The Queen) are published here:
https://www.royal.uk/statement-her-majesty-queen

Lawyers supporting sussexroyal.com:

libel lawyers Schillings

“proceedings in the high court over the misuse of private information, infringement of copyright and breach of General Data Protection Regulation (GDPR)” against Mail on Sunday reporting. See: https://www.theguardian.com/uk-news/2019/oct/01/meghan-sues-mail-on-sunday-for-publishing-letter-to-her-father

 

What is the Nasa Osiris Rex Mission?

December 13, 2019

Osiris Rex is a mission of Nasa. The aim of the mission is to bring back a sample from the asteroid Bennu to earth. Osiris Rex is the abbreviation for “Origins Spectral Interpretation Resource Identification Security – Regolith Explorer”. 

The mission started on Sept. 8, 2016. The spacecraft was launched from Cape Canaveral Air Force Station. An Atlas V rocket carried the spacecraft to space. The spacecraft Osiris Rex travelled for over 2 years until it enter the orbit around the asteroid Bennu on December, 31st. Osiris Rex travelled 228,931,288 km (142,251,307 mi) and reached a speed of 133,441 km/h (83,400 mph).

Osiris Rex is the third spacecraft of the New Fronti133,441 km/h (83,400 mph).ers Program of Nasa next to the New Horizon and Juno spacecraft. The cost of the Osiris Rex mission is 800 Million USD.

The decision for the Osiris Rex mission was taken in 2011 on May 25th.

osiris-rex-diagram_without_labels

Osiris Rex has the shape of a cuboid. It measures 3.1 m in width and 2.72 m heigh. The weight at launch of Osiris Rex on earth was 880 kg. The solar pannels (D) have a total size of 8.5 sqr meters.

Osiris Rex carries the following instruments:

  • OCAMS (OSIRIS-REx Camera Suite)
  • OVIRS (OSIRIS-REx Visible and IR Spectrometer)
  • OTES (OSIRIS-REx Thermal Emission Spectrometer)
  • OLA (OSIRIS-REx Laser Altimeter)
  • REXIS (Regolith X-ray Imaging Spectrometer)
  • TAGSAM (Touch-And-Go Sample Acquisition Mechanism)

In summer 2020 Osiris Rex will try to collect a 60g sample of hydrated, carbon-rich material from the asteroid Bennu.  The sampling site chosen on the asteroid Bennus is called after the bird Nightingale. The sampling site is near the north pole of the asteroid Bennu. The asteroid Bennu itself has a width of approximate 500 m. There are several reasons why this sampling site was chosen. It has lots of fine grained material. The temperature have always been very cool at the north pole. The dirt and rubble therefore have not had much alterations through heat.  The landing site is in a crator and only 20 m wide. Osiris Rex will need 6 m.

The sampling date is set for August, 25th 2020. In case the first collection fails Osiris Rex has still 2 more attempts to collect the sample. The mission will likely end in the first half of 2021. Over 100 people have dedicated thousand of hours to this mission.

This is the way the landing is planned:

On January 21, 2020 the OSIRIS-Rex spacecraft successfully OSIRIS-REx successfully performed a flyover of the sampling site Nightingale. It changed from the save orbit with a distant of 1.2 km to a distant of 620 m. After 11 hourse it returned to save orbit distance of 1.2 km.

Osprey is the second backup sampling site for Nightingale: see https://twitter.com/OSIRISREx/status/1205193577573150721?s=20
OspreyJpeg

The location is of Osprey is close to the Nightingale sampling site: see https://twitter.com/OSIRISREx/status/1205185345119064064?s=20

NigthinggaleOsprey

After Osprey the other back up sample sites are called Sandpiper and Kingfisher:

An overview of the asteroid Bennu and the sampling sites are given in this video:

 

Osirix-Rex has been scanning the asteroid Bennu for a year from a distance of 1.75 km. With this data the optimal sampling sites have been selected. As Osiris Rex discovered more rocks and boulders than envisioned over 3500 citizen scientists were involved to mark rocks, measure boulders, and map craters. Over 14 million annotations were collected in this so called CosmoQuest’s Bennu Mappers project based at the Planetary Science Institute in Tucson, Ariz. (CosmoQuest.org). http://www.bizsiziz.com/the-citizen-scientists-who-helped-map-bennu/

The OSIRIS-Rex spacecraft team will measure the sample mass by spinning the spacecraft before and after sampling. The collected sample mass will change the inertia of the spacecraft.

There is a live tracker for the Osiris Rex spacecraft: https://spacein3d.com/mission/osiris-rex. Current distance from earth is 270,308,918 (167,962,175). Osiris Rex also holds the record for the closest orbit around a space body.

Soon after the arrival Osiris Rex discovered Bennu to be an active asteroid. Bennu from time to time will eject particles into space. Some of these particles will after orbiting fall back while the others will escape into space. The first of such ejection was observed on Januar 6, 2019. There are several reasons for the ejections. One of them is thermal fracturing. https://www.nasa.gov/feature/goddard/2019/osiris-rex-explains-bennus-mysterious-particles

Dante Lauretta of the University of Arizona, Tucson, is the principal investigator for OSIRIS-REx, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. He will share updates on Dante Lauretta twitter account.

Official website of the Osiris Rex Mission: https://www.asteroidmission.org/

The Spaceship Weekly

 

 

Hermes 5 Aufgaben

October 22, 2019
  1. Aus was besteht eine Aufgabe?
    Aus mehreren Aktivitäten für die Erarbeitung der Ergebnisse sowie die Sicherstellung der Qualitätsanforderungen
  2. Wo wird die Aufgabe zugeordnet?
    Der verantwortlichen Rolle
  3. Wie werden Aufgaben gruppiert?
    Inhaltliche zusammenhängende Aufgaben werden als Modul gruppiert.
  4. Wo werden die Aufgaben erfasst?
    Im Projektstrukturplan werden sie den Meilensteinen zugeordnet.
  5. Welche Aufgaben enden mit einem Meilenstein?
    Aufgaben, die zu einem Entscheid führen
  6. Welche Aufgaben enthält das Modul Beschaffung?
    Angebote bewerten, Ausschreibung durchführen, Ausschreibung bearbeiten, Beschaffungsplan erarbeiten, Entscheid zum Zuschlag treffen, Entscheid zur Ausschreibung treffen, Vereinbarung erarbeiten
  7. Welcher Partner ist für die Aufgaben im Modul Beschaffung verantwortlich?
    Der Anwender
  8. Für welche Module und damit einhergehenden Aufgaben ist nur der Partner Anwender verantwortlich?
    Beschaffung, Einführungsorganisation, Informationssicherheit und Datenschutz, Projektführung, Projektgrundlagen, Projektsteuerung
  9. Für welches Modul ist nur der Partner Betreiber verantwortlich?
    IT Betrieb
  10. Welche Aufgaben enthält das Modul Einführungsorganisation?
    6 x E (3x Einführung und 3x Entscheid) = Einführung durchführen, Einführungskonzept erarbeiten, Einführung vorbereiten, Entscheid zur Abnahme treffen, Entscheid zur Betriebsaufnahme treffen, Entscheid zur Vorabnahme treffen
  11. Welche Aufgaben sind im Modul Entwicklung Adil?
    Entscheid zur Entwicklung mit Scrum treffen, Product Backlog führen, Releaseplan erarbeiten, SCRUM einführen, Sprints durchführen
  12. Welche Aufgaben enthält das Modul Geschäftsorganisation?
    3xG  = Geschäftsorganisation aktivieren, Geschäftsorganisation realisieren, Geschäftsorganisationskonzept erarbeiten
  13. Wer ist für die Aufgaben in dem Modul Geschäftsorganisation verantwortlich?
    Der Anwender und der Ersteller. Das einzige Modul in der jeweils zwei Partner für die Aufgaben verantwortlich sind.
  14. Welche Aufgaben gibt es im Modul Informationssicherheit und Datenschutz?
    Ein Entscheid für zu 3xI = Entscheid zum ISDS Konzept treffen, dann ISDS Konzept erstellen, ISDS Konzept überführen und ISDS Konzept umsetzen.
  15. Wer ist für die Aufgaben im Modul Informationssicherheit und Datenschutz zuständig?
    Nur der Anwender!
  16. Welche Aufgaben sind im Modul IT-Betrieb?
    3xB führt zum S wie System: Betrieb aktivieren, Betrieb realisieren, Betriebskonzept erarbeiten, System in Betrieb integrieren.
  17. Wer ist für die Aufgaben im Moul IT-Betrieb verantwortlich?
    Die Antwort steckt in der Frage im Wort Modul – der Betreiber und nur der
    Betreiber! Das einzige Modul in dem der Partner Betreiber auftaucht.
  18. Welche Aufgaben stehen im Modul IT-Migration an?
    Hier braucht es ein A und E um 3xM wie Migration zu machen:
    Altsystem ausser Betrieb setzen, Entscheid zur Abnahme der Migration treffen, Migration durchführen, Migrationskonzept earbeiten, Migrationsverfahren realisieren
  19. Wer verantwortet die Aufgaben im Modul IT-Migraion?
    Die Entscheidung verantwortet der Partner Anwender, den Rest erledigt der Ersteller.
  20. Welchen Aufgaben gibt es im Modul IT-System?
    Es braucht ein E, ein I und ein P und schon bekommt man 4 mal System:
    Entscheid zur Systemarchitektur treffen, Integrationskonzept erarbeiten, Prototyp realisieren, System aktivieren, Systemintegration vorbereiten, Systemkonzept erarbeiten, System realisieren
  21. Wer verantwortet die Aufgaben im Modul IT-System?
    Der Partner Anwender trifft die Entscheidung und dann ist der Ersteller für alle Aufgaben verantwortlich.
  22. Welche Aufgaben gibt es im Modul Produkt?
    Ganz überraschend fangen alle mit P an – 3P: Produkt aktivieren, Produktkonzept erarbeiten, Produkt realisieren
  23. Wer verantwortet diese Aufgaben?
    Alle 3 der Ersteller und beim Produktkonzept kommt noch der Anwender hinzu.
  24. Welche Aufgaben hat das Modul Projektführung?
    Die meisten von allen Modulen, es sind insgesamt 12.
  25. Wie kann man sich all die Aufgaben im Modul Projektführung merken?
    Gar nicht, oder? Änderungsmanagement führen, Entscheid zur Variantenwahl treffen, Intialisierung führen und kontrollieren, Leistungen vereinbaren und steuern, Phasenfreigabe vorbereiten, Probleme behandeln und Erfahrungen nutzen, Projektabschluss vorbereiten, Projektauftrag erarbeiten, Projekt führen und kontrollieren, Qualitätssicherung führen, Risiken managen, Stakeholdermanagment und Kommunikation führen
  26. Wer verantwortet all diese Aufgabe?
    Nur der Anwender und das geht nun gerade so weiter
  27. Welche Aufgaben hat das Modul Projektgrundlagen?
    Gott sei Dank, nur 3: Analyse der Rechtsgrundlagen erarbeiten, Schutzbedarfsanalyse erarbeiten, Studie erarbeiten
  28. Wer ist dafür verantwortlich?
    Ist doch klar, der Anwender
  29. Welche Aufgaben beinhaltet das Modul Projektsteuerung?
    3xEntscheid führt zu 2 weiteren Aufgaben: Entscheid zum Projektabschluss treffen, Entscheid zur Phasenfreigabe treffen, Entscheid zur Projektfreigabe treffen, Initialisierung beauftragen und steuern, Projekt steuern
  30. Und ist doch klar welcher Partner dafür verantwortlich ist?
    Der Anwender und nur der Anwender.
  31. Welche Aufgaben gibt es im Modul Testen?
    Wer hätte das gedacht es sind 4xTs wie: Test durchführen, Testinfrastruktur realisieren, Testkonzept erarbeiten, Testkonzept und- infrastruktur überführen
  32. Und wer ist für die Aufgaben zuständig?
    Ah, diesmal nur 3 mal der Anwender und einmal der Betreiber. Der Betreiber muss die Testinfrastruktur realisieren und der Anwender kann sich endlich mal frei nehmen.

 

Referenz: http://www.hermes.admin.ch/onlinepublikation/index.xhtml?element=kategorie_aufgaben.html

Hermes 5 Rollen

September 29, 2019

Es gibt 18 Rollen in der Hermes Projektmethode.

Im folgenden ein paar Merksätze.

  1. Leiter Rollen gibt es nur in der Hierarchieebene Führung. (Projektleiter, Teilprojektleiter)
  2. Verantwortliche Rollen gibt es nur in der Ausführung (Anwendungsverantwortlicher, Betriebsverantwortlicher, Geschäftsprozessverantwortlicher, ISDS-Verantwortlicher, Testverantwortlicher)
  3. Mitglieder Rollen sind nie in der Ausführung. Projektausschussmitglied ist in der Steuerung  und Fachausschussmitglied ist in der Führung.
  4. Rollen die mit dem Wort Projekt beginnen sind nie in der Ausführung und hauptsächlich in der Führung. Projektleiter, Teilprojektleiter und Projektunterstützung sind in der Führung und das Projektausschussmitglied ist in der Steuerung.
  5. Bis auf den Qualitäts- und Risikomanager sind alle restlichen Rollen, die nicht unter 1-4 fallen in der Ausführung.
  6. Mitglieder sind immer gleichzeitig auch Anwender, Ersteller und Betreiber.
  7. Neben den Mitglieder Rollen ist der Teilprojektleiter auf der Führungsebene Anwender, Ersteller und Betreiber.
  8. Die Fachspezialisten sind weder Anwender, Ersteller noch Betreiber
  9. Alle Verantwortlichen Rollen bis auf den Testverantworticher sind jeweils nur in einer der Hauptrollenkategorien (Anwender, Ersteller, Betreiber).
  10. Nur der Betriebsverantwortliche ist in der Partnerkategorie Betreiber.
  11. Nur der Testverwantwortlicher ist in allen 3 Partnerkategorien wie Anwender, Ersteller und Betreiber vertreten.
  12. Die Rolle Projektunterstützung und Business Analyst sind die Einzigen, die in zwei Partnerkategorien vorkommen wie Anwender und Ersteller. Sie sind niemals Betreiber.
  13. Bis auf die Fachspezialisten, Betriebsverantwortlicher und Entwickler sind alle Rollen mindestens Anwender.
  14. Neben dem Testverantwortlicher ist der Tester und IT- Architekt sowohl Anwender, Ersteller und Betreiber.
  15. Rollen sind immer nur einer Hierarchieebene zugeordnet.

Lernfragen zu Rollen:

  1. Was regelt die Rolle in Projektorganisation?
    Die Rollen regeln die Aufgaben, Kompetenzen und Verantwortung der Projektbeteiligten.
  2. Wie wird jede Rolle spezifiziert?
    Mit einer Rollenbeschreibung
  3. Welche Rollen müssen in jedem Projekt besetzt sein?
    Die Rollen Auftraggeber, Projektleiter und Fachspezialist.
  4. Wie weit beschreibt HERMES die Rollen der Fachspezialisten?
    HERMES beschreibt die Rollen so weit, dass diese als Grundlage für ein gemeinsames Verständnis dienen können.
  5. Welchen Partnern sind die Rollen zugeordnet?
    Anwender, Ersteller und Betreiber
  6. Wo wird die Rollenbesetzung festgehalten?
    Im Projektmanagementplan
  7. Kann eine Person mehrere Rollen wahrnehmen?
    Ja, sofern kein Interessenkonflikt dadurch besteht
  8. Kann eine Rolle von mehreren Personen besetzt werden?
    Ja, z.B. Tester
  9. Bei welchem Partner ist der Auftraggeber angesiedelt?
    Beim Anwender
  10. Wo muss der Auftraggeber das Projekt vertreten?
    In der Führung der Stammorganisation und den Controlling und Vergabestellen.
  11. Was stellt der Auftraggeber für das Projekt sicher?
    Er stellt sicher, dass alle massgebenden Stakeholder im Projekt vertreten sind.
  12. Kann der Auftraggeber gleichzeitig der Projektleiter sein?
    Nein, es müssen getrennte Personen sein.
  13. Wer bestimmt die Mitglieder im Projektausschuss?
    Der Auftraggeber
  14. Was bestimmt der Auftraggeber noch?
    Die Stimmrechte der Projektausschussmitglieder
  15. Welche Rolle rapportiert direkt an den Auftraggeber?
    Die Qualitäts- und Risikomanager Rolle
  16. Wer bestimmt den Projektleiter?
    Der Auftraggeber
  17. Kann der Teilprojektleiter angesiedelt bei Partner Ersteller auch der Projektleiter sein?
    Nein, das geht nur beim Teilprojektleiter des Partners Anwender.
  18. Welche zusätzlichen Rollen kann der Business Analyst in kleinen Projekten übernehmen?
    Die Rolle Projektleiters oder des Teilprojektleiters.
  19. Wer testet?
    Jeder Partner (Anwender, Ersteller, Betreiber) testet in seinem Verantwortungsbereich.
  20. Wer bestimmt den Testverantwortlichen?
    Jeder Partner kann einen Testverantwortlichen einsetzen.
  21. Kann der Anwender das Testmanagement delegieren?
    Ja entweder an den Ersteller oder Betreiber
  22. Wer übernimmt die Gesamtverantwortung für das Projektergebnis?
    Der Anwender auch wenn er das Testmanagement delegiert.
  23. Was beschreiben die Rollen?
    Die Verantwortung, die Kompetenz und die benötigten Fähigkeiten der Projektbeteiligten.
  24. Was wird den Rollen zugeordnet?
    Die Aufgaben und die Ergebnisse.
  25. Welche Rolle ist immer eine Aufgabe zugeordnet?
    Die verantwortliche Rolle für die Ergebnisse der Aufgabe
  26. Was gilt für die Ergebnisse in Bezug auf Rollen?
    Es werden alle Rollen aufgeführt, die an der Erarbeitung beteiligt sind und sind projektspezifisch festgelegt.
  27. Was gilt für alle Rollenbeschreibungen?
    Sie sind gleich strukturiert.
  28. Welche Elemente enthält die Rollenbeschreibung?
    Beschreibung, Verantwortung, Kompetenzen (Befugnis) , Fähigkeiten  (unterscheidet zwischen Kenntnissen und Erfahrung), Beziehungen zu Modulen, Aufgaben und Ergebnissen.

 

Referenz: http://www.hermes.admin.ch/onlinepublikation/index.xhtml?element=kategorie_rollen.html

Teams in Kriesen = Neues Lernen & Neue Lernstrategien entwickeln und nicht beschuldigen – Beispiel VFB Stuttgart

November 4, 2018

Beispiel VFB Stuttgart 1. Bundesliga (2018):
Wir Botschaften helfen nicht. Jeder Spieler einschließlich Trainer und Management sollte nur von “was war mein Anteil” an dieser Situation sprechen und davon was sie schrittweise selbst verbessern können. Dabei geht es nicht um die Schuld sondern nur um eine realistische reflektierte Betrachtung des eigenen Beitrags.

Vorteile der Anteilsanalyse (Beitragsanalyse) :
Wenn ich Profiteamsportler nach ihren besten Trainer frage,
dann nennen sie mir den Trainer von dem sie am meisten gelernt haben. Lernen
und damit der Lernprozess ist entscheidend und nicht der Erfolg oder das
Ergebnis.

Anteilsanalyse Schritt 1:
Jeder Spieler erinnert sich an sein bestes Spiel in seiner Karriere für die es eine
Aufzeichnung gibt. Dann schaut er dieses Spiel gemeinsam mit allen anderen
Spielern an. Jeder macht Notizen zum Verhalten und Körpersprache, Können etc
des Spielers und teilt es mit ihm. Die Analyse kann auch in Gruppen zu je 3 Spielern
durchgeführt werden.

Anteilsanalyse Schritt 2:
Jeder Spieler erinnert sich an sein schlechtestes Spiel in der Karriere für die es
eine Aufzeichnung gibt. Dann schaut er dieses Spiel mit allen anderen Spielern
an. Jeder macht Notizen zum Verhalten und Körpersprache, Können etc des
Spielers und teilt es mit ihm. Die Analyse kann auch in Gruppen zu je 3 Spielern
durchgeführt werden.

Anteilsanalyse Schritt 3:
Delta aus Anteilsanalyse1: mein bestes Spiel und 2: mein schlechtestes Spiel in Karriere.
Dies mit dem letzten Spiel vergleichen und die grösste(n) momentane Stärke(n) und die grösste
momentane(n) Schwäche(n) bestimmen.

Anteilsanalyse weitere Vorteile:
Dieser intensive Lern- und Reflexionsprozess führt zu einem optimalen
Trainingsplan. Der Spieler wird sein bisher bestes Spiel übertreffen und
erstaunt sein, welches Potential er nach oben hat bzw kehrt die Freude am Sport
zurück. Zudem wächst das Verständnis über die eigene Fähigkeiten und die der Mitspieler.
Die Mannschaft wächst durch den intensiven Lernprozess zusammen.
Es bildet sich bzw. fördert die sogenannte “psychological safety” – die Sicherheit, das Selbstvertrauen im Team.

Anteilsanalyse weitere Optionen:
Use the wisdom of the crowd: Fans befragen welches das beste und das schlechtes Spiel
des Spielers gewesen ist und ebenfalls um eine Beurteilung der gezeigten Stärken und Schwächen
bitten. Alternative ausgewählte Fans oder externe Experten / ehemalige Spieler oder Trainer in Ausbildung ebenfalls zu einer Anteilsanalyse 1 und 2 einladen.

Zusätzlich kann auch eine kollegiale Beratung als Intervention verwendet werden. Der Spieler / Trainer stellt sein momentanes Problem / Delta dar, dass er momentan bearbeitet. Die Teamkollegen und/oder externen Experten analysieren die Problemstellung / Delta und generieren Lösungsvorschläge.

Lernprozess fördern:
Der Lernprozess ist wichtiger als das Ergebnis. Ergebnisorientierung führt meist zu einer  Verkrampfung und zu negativen Resultaten. Lernen findet nicht mehr statt, bzw.
herrscht Ratlosigkeit über Verbesserungsmöglichkeiten vor. Es wird ein Schuldiger oder Schuldige
gesucht, die Selbstreflexion und Selbstentwicklung stoppt.
Wird der Lernprozess aufrechterhalten steigt durch den Lernfortschritt des Spielers der Wert des Spielers.

In der momentanen Krisensituation kann es nur noch um den Lernprozess gehen.
Anstatt auf das Ergebniss wie Verhinderung des Abstiegs ist es besser auf positivere Indikatoren
zu fokusiern wie z.B. darauf als Verein, der die beste positive Lernumgebung für Spieler bietet.

Angesicht der Krise ist es besser Ergebnisziele fallen zu lassen (z.B. in einem Ritual zu verabschieden  und stattdessen die Fokussierung auf Lern-, Entwicklungs- und Prozessziele lenken. Es gilt eine Umgebung zu schaffen in der die Spieler sich auf jede Trainingseinheit und Spiel freuen und mit optimaler unerschütterlicher Konzentration spielen können

Es gibt so viele Prozessziele mit dem sich der Verein von den anderen Vereinen  abheben kann, wie z.B. durch die innovativsten und abwechslungsreichsten Trainingsmethoden, die besten mentalen Fitnessentwicklungsmethoden, dem Einsatz von Biohacking, die beste Vorbereitung auf die nächste Karriere nach dem Sport,  usw.

 

 

 

 

 

 

 

Star HD 163296

April 21, 2018

Cometary Dust in the Debris Disks of HD 31648 and HD 163296: Two “Baby” beta Pics
1998 Authors: Michael L. SitkoCarol A. GradyDavid K. LynchRay W. RussellMartha S. Hanner

https://arxiv.org/abs/astro-ph/9807229

Page 4: “crystalline olivine condenses at the high temperatures (>1200 K) that might have been typical of the inner solar nebula,”
“This scenario requires that these grains then be transported to the
region of comet formation and be mixed with ice grains that probably condensed at temperatures below 30 K (Crovisier et al. 1997).”

Explanation: Olivine Crystaline form in the planet forming convection cells in the inner solar nebula at high temperature (>1200 K) while ice (grains) will condense in the outer region of the gas/dust disk of the star. Through jets of the star pieces of crystalline olivine are transported to the outer region. The jets will melt the ice. When jets retreats and the region starts to cool bleow 30 K the ice grains and the crystalline olivine will condense and form the comets.

Meridional flows in the disk around a young star
2019 Authors: Richard TeagueJaehan BaeEdwin Bergin

https://www.nature.com/articles/s41586-019-1642-0

Page 1: “Protoplanetary disks are known to posses a stunning variety of
substructure in the distribution of their mm sized grains, predominantly seen as rings and gaps1, which are frequently interpreted as due to the shepherding of large grains by either hidden, still-forming planets within the disk2 or (magneto-)hydrodynamic instabilities 3.”
“To relate the gas velocities to the local sound speed, we use the
brightness temperature of the optically thick line emission as a measure
the local gas temperature5, finding values spanning between ≈ 90 K
in the inner 30 au and dropping to 30 K at 400 au. ”

The Herbig Ae star HD 163296 in X-rays

2005 Authors: Douglas A. SwartzJeremy J. DrakeRonald F. ElsnerKajal K. GhoshCarol A. GradyEdward WassellBruce E. WoodgateRandy A. Kimble

Page 1: “HD 163296 is a nearby (122 pc) Herbig Ae star (A1Ve,AV =0.m25) with an effective temperatureTef f=9300 K,luminosity log(L⋆/L⊙)=1.48+0.12−0.10, massM⋆ = 2.3M⊙,and radiusR⋆ = 2.1R⊙ (van den Ancker, de Winter, &Tijn A Djie 1998).

“HD 163296 has a strong infrared excess (Hillenbrand et al. 1992; Meeus et al. 2001) and variable Balmer series emission lines (Baade & Stahl 1989; Pogodin 1994;
Beskrovnaya et al. 1998)”

Page 2: “The large infrared excess arises fromheated, optically thick dust within a circumstellar disk(Hillenbrand et al. 1992; Meeus et al. 2001). The disk has a radius of ∼450 AU (3.′′7) viewed at ∼60◦inclination (Mannings & Sargent 1997; Grady et al. 2000). The time-variable double-peaked and P Cygni Balmer and UVemission line profiles arise from a stellar wind, an extended chromosphere, and/or rotation (e.g., Catala et al. 1989).
Radio continuum observations (Brown, Perez, & YusefZadeh 1993) of HD 163296 also suggest wind-driven mass loss. Orthogonal to the disk is an axially-aligned chain
of Herbig-Haro nebulae extending several seconds of arc above and below the disk (Grady et al. 2000). A Lyαbright jet extending 6′′ along the SW arm of the HerbigHaro flow has also been discovered (Devine et al. 2000).”

Comet and Planet Formation – the Convection Cell Condensation Ring Model

April 21, 2018

ConvectionCellRingCondensationFormation

Probably all of us know the accretion model in which all bodies in our universe from our stars, planets to comets and asteroids (small bodies)  are formed due to the force of gravity .  In 1589 Galileo conducted his first experiments with gravity in the Leaning Tower of Pisa. Later in the 1660s Newton developed the law of motions  which includes the law of gravity at the unviersity of Camebridge.

In 1755, German philosopher Immanuel Kant proposed the nebular hypothesis, in which a great cloud of material, the solar nebula, preceded the Sun and planets. ” Link. Gravity then started the formation process of our solar system, first the sun and then the planets. And it is also gravity that holds the planets to not vanish into the vacuum of the space around the solar system. So far so good. This model has made some very good predictions and led to the discovery of further planets in our solar system such as Uranus in 1781. But the first sign of failures came with Einstein. When did Isaac Newton Finally Fail?  

And lately the accretion model is not making the right predictions. Rather surprises are the new normal.
The latest example are:
a) Star and planates formation happens simultanously: “A Case of Simultaneous Star and Planet Formation” Authors: Felipe O. AlvesL. Ilsedore CleevesJosep M. GirartZhaohuan ZhuGabriel A. P. FrancoAlice Zurlo, and Paola Caselli – Published 2020 November 19 • © 2020. The American Astronomical Society.
b) “Black hole does not stop star birth instantaneously which goes against the current scientific prediction” – Allison Kirkpatrick, assistant professor at the University of Kansas in Lawrence Kansas and co-author on the study    in Galaxy Survives Black Hole’s Feast – For Now (Nasa.gov) 

When scientiest started to research atoms and particles it was the first time gravity (accretion) failed completley. As well as in other structure forming processes different factors are key and accretion is not used to explain the structure formation. A good example is the hail forming process where thermo dynamics (temperature differences) is the main driver. And even for the height and timing of our tides it is not so much the gravitational but rather the regional forces . Link
Lately the same applies to why our earth has kept her oceans while Mars lost all of his. In this case it is the planetary magnetism and not the gravity that is decisive.

Reference: Planetary Magnetism as a Parameter in Exoplanet Habitability, Planetary Magnetism as a Parameter in Exoplanet Habitability Link

The discovery of exo planets created further challenges for the accretion model. Link.

And up until 2013 the common view was that our solar system is surrounded by a vacuum space without any border.  This view has changed with the IBEX mission (Interstellar Boundary Explorer Spacecraft).  Retention Theory: Link and Link.

Folie2

Viking 2 has crossed this boundary last year (2019). Reference: “Voyager 2 Illuminates Boundary of Interstellar Space” Link
“The plasma inside the heliosphere is hot and sparse, while the plasma in interstellar space is colder and denser. ” Ed Stone, project scientist for Voyager and a professor of physics at Caltech.
Reference: News Media Contact, Calla Cofield, Jet Propulsion Laboratory, Pasadena, Calif.,
calla.e.cofield@jpl.nasa.gov

“NASA’s Voyager 2 Prober Enters Interstellar Space” Link
American Geophysical Union (AGU) in Washington
Plasma Science Experiment (PLS)
John Richardson, principal investigator for the PLS instrument and a principal research scientist at the Massachusetts Institute of Technology in Cambridge
Nicola Fox, director of the Heliophysics Division at NASA Headquarters
Suzanne Dodd, Voyager project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California

“The Voyager Interstellar Mission is a part of NASA’s Heliophysics System Observatory, sponsored by the Heliophysics Division of NASA’s Science Mission Directorate in Washington. JPL built and operates the twin Voyager spacecraft. NASA’s DSN, managed by JPL, is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions. The Commonwealth Scientific and Industrial Research Organisation, Australia’s national science agency, operates both the Canberra Deep Space Communication Complex, part of the DSN, and the Parkes Observatory, which NASA has been using to downlink data from Voyager 2 since Nov. 8.”

And lately rotating Gas Rings have been discovered around the star HD 163296. Link
Meridional flows in the disk around a young star
2019: Authors Richard Teague, Jaehan BaeEdwin A. Bergin

In the convection cell condensation model the planets and small bodies form within these gas rings while in the accretion model the planets form in the gaps between these rings.

PlanetFormationGasConvectionRing

Convection Cells for example exist in the atmosphere of our planet, in our sun or in liquids.

ConvectionCell

For liquids to form convection cells a one sided heat source is required. Link1. Link2. Natural Convection in plane horizontal layers are called Bénard Cells. Link. These cells are observable for example on our sun’s surface. 

The sun itself is a one sided heat source in a three dimensional spheric convection zone (probably a pancake structure). The IBEX ribbon acts as the boundary layer for this convection zone. Below a very simplistic graphical sketch.

SolarSystemConvectionZone

Our sun was much hotter in the past. As a young protostar the sun had a temperature of likely 1 Million Kelvin. Plasma Jets would heat up the gas/dust disk around the proto sun.

ProtosunPlasmaJets

With a heat source the proto sun with plasma jets and a boundary layer (Ibex Ribbon) convection cell rings formed in the gas/dust disk. The tilt and rotation of our planets today are an indication.

AxialTiltsPlanets

The accretion model instead needs large impact scenarios to explain the different rotation and tilts of the planet Venus and Uranus and a collision of the Earth and Theia to form the moon.

Based on the convection cell condensation theory there could be a link between the characterics of the star and the type of exoplanets formed (thermo dynamics). Exoplanets Database:
https://exoplanetarchive.ipac.caltech.edu/

Below an example of a protoplanetary disk with boundary layers:

Boundary Layers Cygnus protoplanetary nebula
Protoplanetary nebula in Cygnus shared by Jason Major @JPMajor on twitter

Protoplanetary Egg nebula in Cygnus 3000 light-years away shared by Jason Major @JPMajor on twitter
“An opaque cloud of dust and gas hides a central star that’s expelling its outer layers; beams of its light escape the cloud through holes, illuminating the layers.”

Ohter examples of Planetary Disks:

VorticesPlanetaryDisk

 

HLCentauriPlanetaryDisk

 

ConvectionCellRingCondensationModel

But for the accretion model it is even more complex to explain the formation of all the small bodies in our solar system and how they were transported to their current locations.

The dust composites formed at different temperatures and different times yet the nucleus formed in the outer region of our solar system. One of the most complex ones is 81P/Wild 2. Link  The composition of the dust is known due to several space mission such as Stardust, Deep Impact, Rosetta and lately a Japanese Mission.

Lawrence Livermore National Laboratory (LLNL) scientists ( Greg Brennecka, lead author) studied isotopes of the element molybdenum found on meteorites. They came to the conclusion that the solar system must have formed in less than 200 000 years. Link. “The oldest dated solids in the solar system are calcium-aluminum–rich inclusions (CAIs), and these samples provide a direct record of solar system formation. These micrometer- to centimeter-sized inclusions in meteorites formed in a high-temperature environment (more than 1,300 Kelvin), probably near the young sun. They were then transported outward to the region where carbonaceous chondrite meteorites (and their parent bodies) formed, where they are found today. The majority of CAIs formed 4.567 billion years ago, over a period of about 40,000 to 200,000 years.

Comet_Asteroid_Formation

Small body database:
https://ssd.jpl.nasa.gov/sbdb.cgi

Most asteroids or comets due to the high pressures > 5000 PA when parts of their material formed and as well through the relativ fast cooling in space or through impacts have formed quasicrystal structures. Their porous structures allow water to be embedded within and freeze. The mission to the asteroids Ryugu and Bennu will likely bring back some more quasicrystal. Link.  See Paul Ehrenfeldt, Luca Bindi’s work on quasicrystals.
The composition of asteroids and comets have formed in different locations of the planetary disk. It is through the jets that brings together the materials and finally their final structure will form at the farest transport point of the jet or when the jets finally stop.

1979: V. V. Kryachko found the first natural quasicrystal
1982-84: Paul Steinhardt theorized about new form of matter and developed togehter with Dov Levine the Theory for quasicrystals based on the Penrose Tiles (1974)
1982: Dan Schechtman discovered the first quasicrystal in the laboratory (Nobel Prize)
1985: Razin et. al describe the quasicrystal found by V.V. Kryachko as new crystal (unknown of the fact that it was a quasicrystal)
2008: Luca Bindi identified the first natural quasicrystal 
2009: Confirmed by Paul Steinhardt and ??
Link

While the sun’s plasma jets have long ago seized, the solar wind still impacts the shape and behaviours of the objects in our solar system.

AsteroidSpinSolarWind

Link 

Even our earth rotation is variable and sometime can even speed up. 2020 saw the shortest days since measuring the daily velocity (duration of day) of the earth.  Link

High-temperature condensation of iron-rich olivine
in the solar nebula
1989: Herbert Palme and Bruce Fegley Jr.

Page 1: “Olivine is the most abundant mineral in many chondritic meteorites”.

“FeSiO 3 and Fe2SiO 4 were stable at T < 600 K in the solar nebula”.

Page 2: “formation of the FeO-bearing
olivines in the rims and veins occurred at comparatively
high temperatures. However, as noted
earlier in section 1, this is not possible in a solarcomposition
gas because formation of FeO-bearing
olivines with the composition Fa20 requires temperatures
of -425 K [9] while more-fayalitic
olivines, like those found in Allende, require even
lower temperatures.
As originally shown by Palme and Fegley [18],
a gas phase that is significantly more oxidizing
than a solar composition gas is needed for the
formation of FeO-bearing olivine at high temperatures
in the solar nebula. In the present paper we
calculate the conditions required for condensation
of FeO-bearing olivine and show that an oxygen
fugacity several orders of magnitude greater than
that of a solar-composition gas is needed for condensation
of the observed mineral assemblages.

See figure 2: Condensation temperature

“Condensation temperatures of corundum, forsterite and
various Fe-bearing phases (Fe-metal, wiistite, magnetite) as
function of the oxygen fugacity of the nebula (expressed as
HEO/H 2 ratio). The field for possible forsterite-fayalite solid
solutions is indicated. The condensation curves for wiistite and
magnetite are shown for comparison. They were calculated
assuming no removal of Fe from the gas by condensation of
metal. In the classical condensation model Fe would condense
as metal and equilibrate at low temperatures with silicates to
produce FeO-rich olivine and pyroxene. At more oxidizing
conditions a solid solution of forsterite and fayalite would
condense before Fe-metal. The amount of fayalite would increase
wi.th increasing H20/H 2 ratios of the gas.”

“For example, the condensation
temperatures of forsterite and metallic
iron at 10 -6 atm in solar-composition gas are
1234 K and 1205 K, respectively.
Oxygen fugacities higher than those”

Page 5: “In a gas of solar composition, enstatite condensation
begins a few tens of degrees below the
condensation temperature of forsterite. For example,
at a pressure of 10 -3 atm and a solar HzO/H 2
ratio, forsterite would condense at 1429 K. If
condensation of forsterite is neglected, enstatite
would condense at 1426 K.”

Kuiper Belt and Oort Cloud:

nasa-pathsofspaceprobesthroughthekuiperbelt-20190105

solar system and Oort Cloud with distances (Sun .... ?-Centauri

What is the similarity between a foundling of a glacier and the Kuiper Belt and the  Oort Cloud?

Lately so called “accretion” bursts during formation of young stars have been observed. These blasts can last for about two weeks to a few months. The latest observation was made in January 2019 by astronomers at Ibaraki University in Japan at the protostar, G358-MM1. The previously last two observed bursts were different and therefore suggest that they depend on the  evolutionary stage of the young star.

Reference:

Disk-mediated accretion burst in a high-mass young stellar object
A. Caratti o Garatti (1), B. Stecklum (2), R. Garcia Lopez (1), J. Eislöffel (2), T.P. Ray (1), A. Sanna (3), R. Cesaroni (4), C.M. Walmsley (1 and 4), R.D. Oudmaijer (5), W.J. de Wit (6), L. Moscadelli (4), J. Greiner (7), A. Krabbe (8), C. Fischer (8), R. Klein (9), J.M. Ibañez (10) ((1) Dublin Institute for Advanced Studies, (2) Thüringer Landessternwarte Tautenburg, (3) Max Planck Institut für Radioastronomie, (4) INAF Osservatorio Astrofisico di Arcetri, (5) University of Leeds, (6) ESO European Organisation for Astronomical Research in the Southern Hemisphere, (7) Max Planck Institut für Extraterrestrische Physik, (8) Deutsches SOFIA Institut, (9) NASA Ames Research Center, (10) Instituto de Astrofísica de Andalucía)

Astronomers Have Caught a Rare And Massive ‘Accretion Burst’ in Our Galaxy
Author: JAMES OKWE CHIBUEZE, Associate Professor, North-West University.

cloughmore_stone2c_rostrevor2c_july_2010_280129
Foundling of Cloughmore

Similar to foundlings of retreated glaciers, the Oort Cloud and Kuiper Belt are the witness of a very active sun during formation of our solar system. Oort Cloud comets condensed when the sun was most active and these left overs were pushed to the furthest distant to the sun. Kuiper Belt comets condensed when the young sun had its second highest activity peak. Thus Oort Cloud comets are of similar composition and the same applies to the Kuiper Belt objects.

Book:
Hans Rickman: Origin and Evolution of Comets:Ten Years after the Nice Model and One Year after Rosetta (Advances in Planetary Science Book 2)

“A component of particular interest hosts the so-called calcium-aluminum-rich inclusions or CAIs (Sec. 2.6.2). These have a common age (4 567 Myr) that exceeds all other ages of solar system materials, so their formation is taken as the marker of the origin of the solar system. The whole-rock ages of the chondrites containing the CAIs are typically”

“Most of the short-lived radioisotopes that existed in the infant solar system can be explained either as products of stellar nucleosynthesis in the Galactic disk at relatively large distances, which is continuously ongoing, or as results of the corpuscular irradiation of the solar nebula by the solar wind, which was very strong when the Sun was formed.”

“An unexpected result is a strong heterogeneity of the olivine and pyroxene compositions between individual grains,”while Hartley 2 may rather be referred to the Scattered Disk (see Sec. 1.4), the difference in D/H ratio might reflect a difference in formation conditions at different distances from the Sun — a fundamental issue when discussing comet origins.”  which indicates very different formation conditions.”

“CAI stands for Calcium–Aluminum-rich Inclusions. These occur in many chondritic meteorites and consist of minerals with extremely high condensation temperatures, often involving calcium and aluminum.”

“The most prominent of these are C2, C3 and CN, each shining in its particular wavelength bands. The so-called Swan bands of C2 are often dominant.”

“Oversimplification of the dynamical model used is extremely risky, as was seen during the ESA/Giotto flyby of comet 1P/Halley in 1986, when the spacecraft was hit by a grain far too large (its mass was ∼1 g) to be compatible with the advance predictions. “

“The DWR (dust/water ratio) would be ≃6, but Rosetta/ROSINA data for CO and CO2 had shown these molecules to contribute ∼50% in mass relative to H2O (Hässig et al. 2015).” Comets are now called dirt/dust balls with ice.

Book:
Asteroids: Astronomical and Geological Bodies (Cambridge Planetary Science Book 17) (English Edition)” von Thomas H. Burbine

“These spectral observations of asteroids showed that these bodies have a wide variety of surface mineralogies and experienced a wide range of heating.”

“Meteorites were found to range from those that melted (e.g., irons, stony-irons, achondrites) to those that experienced minimal heating (e.g., ordinary chondrites, carbonaceous chondrites, enstatite chondrites).”

Modeling a Carrington-scale Stellar Superflare and Coronal Mass Ejection from κ
1Cet

Book (Kindle):
“Comets And Their Origin: The Tools To Decipher A Comet (English Edition)” von Uwe Meierhenrich

“One lesson that needs to be kept in mind from previous missions to comets is that every comet has yielded surprises that upset one or another of our conceptual understandings of comets. Rosetta should be no exception to this pattern. We cannot predict whether the surprises will be in chemical composition, in nuclear structure, in nuclear topography and surface processes, or in coma flow properties.”

“The 95P/Chiron comet, which has an estimated diameter of 200 km, seems to be exceptional in terms of its age and orbit”

“one example is the formation of surface craters through internal explosions that are similar to steam-explosion craters on Earth called maars [15]. Crystallization of amorphous ice at depths of a few tens of meters [16] might also release heat that triggers cometary outbursts”

“closer examination reveals that the cometary tail is composed of two morphologically different tails (see Figure 1.3), a thin long tail (type I tail), which is the plasma tail, and a diffuse curved tail (type II tail), which is the dust tail. The two tails point in two different directions, and it is now known that both tails do not point exactly in the antisolar direction.”

“Forces other than gravity determine the behavior of these particles; in particular, solar radiation pressure is known to generate a significant interaction with the dust particles. The solar radiation pressure force originates from the interaction of electromagnetic radiation (the sunlight) with matter and describes the momentum transfer from the radiation field, or photon stream, to the scattering and absorbing dust [19].”

“The temperature at which comets formed is assumed to be greater than 25 K because highly volatile species such as helium and the other noble gases, along with molecular nitrogen, methane, and carbon monoxide, exhibit very low abundances [8].”

“The IKS-determined temperature of the nuclear surface was measured to be 300–400 K [60], which is much greater than previously thought [53]. Other references suggest a surface temperature of ∼330 K [1]. This temperature was also much greater than the expected 215 K, which is necessary to sublimate water ice [18].”

“The apparently contradictory presence of ice in the cometary nucleus and the comet’s high surface temperature can be explained by the assumption that the nucleus is covered by a thin insulating layer [60] (or mantle) of a black, porous, refractory substance with a thickness of ∼1 cm.”

“some comets are thought to have heated their interior through radioactive decay processes, which are primarily due to the short-lived radioisotope 26Al.

“The detection of the PAH anthracene was thus reported. In 2004, this technique was applied to the three peaks at 371, 376, and 382 nm to suggest a tentative detection of the PAH pyrene in the coma of comet Halley [68].”

“In 2006, microscopic and X-ray analyses of Stardust’s impacted dust particles (Figures 1.28 and 1.29) demonstrated, somewhat surprisingly, that the impacted particles were not exclusively interstellar grains of submicron size. Abundant high-temperature minerals, such as forsterite (Mg2SiO4), which has a condensation temperature of 1400 K, enstatite (MgSiO3), and calcium- and aluminum-rich inclusions (CAIs), were identified in the impacted cometary particles; such materials must have formed in the hot and innermost regions of the solar nebula, well inside the orbit of Mercury [132]”

“In summary, the data obtained by DS1 provided unique information about the surface of comet Borrelly’s nucleus, which is hot, dry, and extremely dark.”

“A cometary nucleus can be characterized as an asymmetric, kilometer-sized solid object with an irregular tar-type crust that contains dirty ices in a porous matrix of refractory material and that rotates toward the Sun.”

“contradicts the Whipple theory of how comets are made: that they consist of dust particles held together by ice [50]”

“Its spectacular and unexpected data revealed that cometary particles contain not only hydrogen (with its isotopes, deuterium and tritium) and oxygen but also carbon and nitrogen atoms. One of the significant surprises of the Halley encounters was the detection of large amounts of carbonaceous dust that was rich in H, C, O, and N, the so-called CHON particles [1].”

“Giotto’s measurement of the geometric albedo p of the cometary surface was a tremendous scientific surprise. Estimations for p varied; some values were as high as p = 0.6 [18].12 Giotto observed that the surface of 1P/Halley’s nucleus is dark and exhibits a very low geometric albedo of p = 0.04, thereby indicating that the comet’s nucleus at full phase has about one-third the reflectivity of the moon [10, 98]. The albedo value is one of the lowest of all known objects in the Solar System [98]: only some C-type asteroids and Saturn’s moon Iapetus exhibit smaller values as low as p = 0.01 [102]. Keller et al. [98] concluded that most of the surface of the nucleus of comet 1P/Halley must be covered by a nonvolatile insulating crust of dark material that traps light in tiny cavities between fluffy dust particles because of its high porosity. The temperature of the crust must become much hotter than the equilibrium temperature for the sublimation of water ice [98]. Keller et al. [10] suggests that the crust or mantle is more than several centimeters thick.”

“The volume of 1P/Halley’s nucleus was determined to be 420 km3, and its density was determined to have the quite low value of 0.55 ± 0.25 g cm−3, perhaps only 0.2 g cm−3 [10]. Comets are thus the lowest density bodies in the Solar System.”

“Britt believes that the spherical shape of the nucleus of comet Wild 2 and its impact-cratered surface hint at its direct formation from the dust and gas of the presolar disk. Wild 2 lacks major structural discontinuities and heterogeneities, suggesting that it did not form from the juxtaposition of large blocks of physically dissimilar materials acquired either by the accretion of various planetesimals or by extensive collisional processing [15].”

“The surprising and most prominent signal in the positive-ion spectra at m/z = 90 was more difficult to understand. Kissel et al. proposed that the C6NH+ ion originated from methylpyridine-like alicyclic structures.”

“The CIDA mass spectra of Wild 2 dust grains are similar to the spectra obtained from comet 1P/Halley, thereby indicating that the two comets have similar chemistry even though they have different ages [113].”

“Sophisticated laboratory analyses of returned dust particle samples from Wild 2 revealed that many of the silicate grains are high-temperature minerals that formed in the inner regions of the solar nebula; this result considerably modified our understanding of the formation of comets [132].”

“The Deep Impact data indicated that the nucleus of 9P/Tempel provided signs of past geological activity; it is much more than a primordial “dirty snowball” [146]”

“FTIR studies confirmed the presence of crystalline silicates in the Wild 2 samples, thereby indicating that this comet is a mixture of presolar and Solar System materials [140]”

“quantified the hydrogen and deuterium isotopes in five dust particles captured by Stardust. The D/H values obtained were reported to range from typical terrestrial values up to moderate D/H enhancements of approximately three times the D/H value of mean ocean water. The D enrichments were associated with carbon, and it is important to note that these enrichments might have been modified during impact and cannot be ascribed to Wild 2 water”

“particles captured by Wild 2 performed by Zolensky et al. revealed the presence of primarily silicates [129, 130], such as olivine [(Mg,Fe)2SiO4], and low-Ca pyroxene [(Mg,Fe)SiO3] and also ubiquitous Fe-Ni sulfides, including troilite (FeS) [130] and Fe-Ni metal; these compounds require a wide range of formation conditions [137]. In agreement with the data provided by Brownlee et al. [132], these data strongly support the formation of mineral cometary constituents at very different locations in the protoplanetary disk [137]”

“Michael F. A’Hearn from the University of Maryland concluded from the Stardust data that even more extensive and earlier mixing of the material took place in the disk in which the planets of the Solar System formed [36]”

“inner Solar System materials – which account for ∼10% of the comet’s mass – must have been transported beyond the orbit of Neptune, either by ballistic transport above the nebular midplane or by turbulent transport in the midplane [132]”

“Interestingly, these authors found that the abundance ratio of ethane relative to water increased after impact by a factor of 1.8, whereas the abundance ratios for methanol and hydrogen cyanide remained unchanged. The data hint at the possibility that the nucleus of 9P/Tempel is inhomogeneous in its composition [154].”

“Fe-rich fayalite were found to be the dominant olivine species in a 3.9 abundance-ratio-by-mole fraction, suggesting that the temperature for the incorporation of olivine into the comet was between 1100 and 1400 K [153].”

“The presence of high-temperature crystalline silicates (olivines) was surprising and requires thermal heating of material near the young Sun, where temperatures >1000 K were reached only inside the present orbit of Mercury [153].”

“Furthermore, Zolensky and coworkers point to the fact that the mineralogy reported by Lisse et al. for comet 9P/Tempel is in clear contrast with the lack of aqueous alteration products in Wild 2 that was demonstrated by the Stardust mission [137]. This mineralogical difference could be due to differences in the geological histories of Jupiter-family comets [137].”

“Moreover, Sugita and colleagues [156] found that the high mass ratio of crystalline silicates compared with amorphous silicates demonstrates that comet 9P/Tempel, which is a Jupiter-family comet, contains many high-temperature components of the solar nebula, similar to Oort-cloud comets.”

Küppers, Keller, and colleagues [155] concluded that the dust/ice mass ratio is most likely >1, thereby suggesting that comets are “icy dirtballs” rather than “dirty snowballs,” as is commonly believed [148]”

“In 2010, prior to EPOXI’s 103P/Hartley observations, Belton [176] proposed a remarkable possible scenario for the long-term evolution of cometary surfaces near the Sun. This scenario suggested an evolutionary sequence by which Jupiter-family comets might evolve from a Wild 2-type morphology to a Tempel 1-type morphology and, finally, to a Hartley 2-type morphology [175].”

“the authors argue that the first class of particles, olivine IDPs, originate from comets captured from eccentric orbits; the second class of particles, pyroxene IDPs, originate from comets with prograde orbits; and the third class of particles, hydrous layer and lattice silicate IDPs, originate from asteroids.”

“These claims about successive and stepwise comet formation are in agreement with observations of comet splitting, such as comet West, which split into four fragments in March 1976, thereby indicating that the building blocks, the cometesimals, may not be tightly bound together [9].”

“addition, data from the Deep Impact mission regarding the dust composition of comet Tempel 1 (see Section 1.8) revealed a great heterogeneity, which is consistent with the idea that the nucleus is made of cometesimals (smaller chunks) with differing compositions [37].”

“A’Hearn [37] proposed extensive radial mixing of cometesimals in the outer parts of the early Solar System rather than formation of cometary nuclei from cometesimals that condensed at a uniform distance from the proto-Sun, thereby making it difficult to determine a precise location for the formation of comets.”

“In ortho-water, the nuclei of the two hydrogen atoms have the same spin, whereas in para-water, the two hydrogen atoms have different spins”

“The temperature Tspin is assumed to depend on the temperature during formation of the water molecule.”

“the cometary Tspin values vary from 20 to 60 K and cluster at ∼30 K [91].”

“Observations by Rodgers et al. [122] of the HNC and HCN abundances in the coma of comet C/2002 C1 (Ikeya–Zhang) as a function of its heliocentric distance demonstrated that the recorded amounts of HNC cannot be synthesized in the cometary coma by chemical reactions, thus suggesting degradation of complex organic material as the source of HNC in cometary comae instead.”

“By observing comet Ikeya (1963a), Stawikowski and Greenstein [134] recorded intensities of the emission lines of the Swan bands 12C2 and 12C13C to calculate the 12C/13C ratio; they found a value of 70 ± 15. On the Earth, this ratio is ∼90. Stawikowski and Greenstein thus concluded that cometary material could have come from the same region of the solar nebula as did the Earth or from interstellar matter.”

“13CN rotational lines in the R-branch, which is located in the visible (violet) spectral range. The authors determined a 12C/13C ratio of 65 ± 9. Later, however, the validity of these data was called into question [138], and values of 95 ± 12 were reported for the rotational lines in the R-branch [139]”

“The 12C/13C ratio was found to be 111 ± 12 for HCN, which is consistent with the Solar System values [140]. The authors point to the fact that the interstellar medium exhibits, according to investigations by Wilson and Rood [141], a 12C/13C isotope ratio of 77 ± 7; thus, an interstellar origin for comet Hale-Bopp was excluded by Jewitt et al. [140].”

“Hawaiian JCMT study of comet Hale-Bopp, Jewitt et al. [140] moreover distinguished the nitrogen isotopes 14N and 15N in hydrogen cyanide, HCN. For the determination of the ratio, the area of a different hyperfine component line for HC15N at 344.2003 GHz was quantified; this measurement yielded an HC14N/HC15N ratio of 323 ± 46. According to the authors, this value suggests a Solar System origin, the ratio of which is given in the literature as 270 [144] or 272 for atmospheric nitrogen [133]; however, the identified value was also consistent with the interstellar medium, which has 14N/15N ≈ 460 ± 100 [145].”

“For all comets, regardless of their origin or heliocentric distance, a remarkably constant 14N/15N value of 147.8 ± 5.7 was recorded. The authors indicated that this finding supports fractionation in the early Solar System and a common origin for comets.”

“The low 14N/15N ratios in HCN and the CN and NH2 radicals, however, suggest fractionation in the early Solar System and a common origin for the comets.”

“According to the Vienna Standard Mean Ocean Water (VSMOW), terrestrial water exhibits a strict and stable deuterium-to-hydrogen (D/H) ratio of 1.558·10−4, with an error of 0.001·10−4. The VSMOW 18O/16O ratio is 2.01·10−3.”

“In six Oort cloud comets, including C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp) [4], the D/H ratio has been determined to have the relatively high value of (2.96 ± 0.25)·10−4. This value is twice the value of terrestrial water.”

“Carbonaceous chondrites with asteroid parent bodies have been observed to have the low D/H ratio of (1.4 ± 0.1)·10−4.”

“comet 103P/Hartley 2 “…”Jupiter-family comet that is believed to originate from the Kuiper belt.” … “Difficulties in explaining the low D/H ratio in the water vapor of comet 103P/Hartley remain. One possible explanation includes large-scale mixing of material between the inner and outer Solar System [7], which is expressed by radial mixing of comets and asteroids that originated in different regions [8].”

“Mumma and Charnley note that isotopic exchange with H2 in the turbulent nebula would predict low D/H ratios for comets formed close to the orbit of Jupiter and higher D/H ratios for comets formed outside the turbulent solar nebula beyond 17 AU.”

“Surprisingly, proteins in all living organisms of all domains of life on Earth exclusively use l-amino acids (!) for their molecular architecture [1]”

“Why and how was the balance tipped to the left? Very recently, this phenomenon was classified in the journal Nature as one of the five most difficult tasks to decipher that remain unsolved in the natural sciences [3]”

“Since 1986 and the Giotto encounter with comet 1P/Halley [38, 58, 59], and in particular because of the Deep Impact mission to comet 9P/Tempel 1 [27], it became known that cometary nuclei were neither symmetric nor homogeneous in their composition”

“Observations performed by the Keck-2 telescope in the near-infrared indicated that the emission profiles of organic molecules such as ethane, methanol, and HCN vary, which suggests that the cometary nucleus is inhomogeneous in its chemical composition [16]”

“Küppers, Keller, and colleagues [19] concluded that the dust/water mass ratio of 9P/Tempel was much greater than 1, which suggests that comets are “icy dirtballs” [18] rather than “dirty snowballs”, as suggested by Whipple in 1950 [20, 21]”

“Asteroids can generally be considered remnants of a planet or planets that never formed; they are not the debris from an exploded planet [23].”

The Second Kind of Impossible: The Extraordinary Quest for a New Form of Matter   Paul J. Steinhardt

“The relative percentages on Earth are determined by the history of the planet and the exposure of its minerals to cosmic rays and radioactivity. Other planets, like Mars, have had different evolutionary histories and their minerals have been exposed to different levels of cosmic rays and radioactivity. So minerals from Mars contain percentages of the three oxygen isotopes that are different from those found on Earth. The same applies for minerals formed on other planets and on different types of asteroids.”

“Ed had spent his career studying both natural and man-made materials. Working on JPL’s Mars Exploration Rover mission, he had discovered remarkable similarities between a rock on the Martian surface and a rare rock sample found on Earth.”

“logical explanation was that the metal solidified ultra-rapidly, before it could react with the oxygen bonded to the silicate. Ultra-rapid cooling would also explain the oddly contorted shapes. Yet rapid cooling at such a high rate would not normally occur as part of any natural process on the surface of the Earth or in an ordinary laboratory.”

“We knew from standard tables used by engineers and geoscientists that the cooling silicates would have been the first to crystallize, at about 1500° C. The copper-aluminum alloys would have crystallized later, at about 1000°” 

“I would need to find conditions where aluminum could easily separate from oxygen. It would require ultra-high pressures, which can be found three thousand kilometers below the surface of the Earth near the core-mantle boundary.”

“And when it comes to science, the simplest explanation is usually the best.”

“David Nelson on rapidly cooled liquids.”

“The same applies to rapidly cooled solids, which scientists call glassy or amorphous.”

“The diffraction pattern of a quasicrystal would be composed of absolutely perfect pinpoints arranged in a snowflake pattern.” 

Modeling a Carrington-scale Stellar Superflare and Coronal Mass Ejection from κ
1Cet

Benjamin J. Lynch, 1 Vladimir S. Airapetian, 2, 3 C. Richard DeVore, 2 Maria D. Kazachenko,4 Teresa Luftinger, ¨5 Oleg Kochukhov, 6 Lisa Rosen, ´6 and William P. Abbett1

Click to access 1906.03189.pdf

Page 1: “The cumulative effects of both steady-state and extreme space
weather from active stars, including intense X-ray and extreme ultraviolet (EUV) radiation, large fluxes of highly energetic particles, and frequent exoplanet interactions with stellar coronal mass ejections (CMEs), will have a significant impact on the exoplanets’ atmospheric evolution, and ultimately on their habitability “(Lammer
et al. 2007, 2009; Drake et al. 2013; Osten & Wolk 2015;
Kay et al. 2016; Airapetian et al. 2019b).

Page 2: “younger stars exhibit greater maximum flare energies and higher flare
frequencies” (Maehara et al. 2012; Notsu et al. 2013, 2019; Shibayama et al. 2013).

Oumuamua_SolarSystemObject

The Interstellar Object ‘Oumuamua as a Fractal Dust Aggregate

Eirik G. Flekkøy1Jane Luu2,3, and Renaud Toussaint1,4

https://iopscience.iop.org/article/10.3847/2041-8213/ab4f78 or https://arxiv.org/abs/1910.07135

“Oumuamua exhibited a nongravitational acceleration that appeared inconsistent with cometary outgassing, leaving radiation pressure as the most likely force”

“a fractal body with the ultra-low density of 10−2 kg m−3.”

Probably a quasicrystal structure due the fast cooling in space.

Discovery of fossil asteroidal ice in primitive meteorite Acfer 094

  1. Megumi Matsumoto1,*,,
  2. Akira Tsuchiyama2,3,
  3. Aiko Nakato1,,
  4. Junya Matsuno1,
  5. Akira Miyake1,
  6. Akimasa Kataoka4,
  7. Motoo Ito5,
  8. Naotaka Tomioka5,
  9. Yu Kodama6,
  10. Kentaro Uesugi7,
  11. Akihisa Takeuchi7,
  12. Tsukasa Nakano8 and
  13. Epifanio Vaccaro9
  1. 1Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan.

  2. 2Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan.

  3. 3Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, GD 510640, China.

  4. 4National Astronomical Observatory of Japan, Tokyo 181-8588, Japan.

  5. 5Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kochi 783-0093, Japan.

  6. 6Marine Works Japan Ltd., Kanagawa 237-0063, Japan.

  7. 7Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan.

  8. 8Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8567, Japan.

  9. 9Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK.
  1. *Corresponding author. Email: m_matsumto@tohoku.ac.jp
  •  Present address (primarily responsible for media coverage): Department of Earth and Planetary Materials Science, Tohoku University, Miyagi 980-8578, Japan.

  •  Present address: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa 252-5210, Japan.

“UPLs ( ultraporous lithology) with abundant pores are fragile. UPLs are porous aggregates of amorphous and crystalline silicates, Fe─Ni sulfides, and organics. Nevertheless, UPLs show no evidence for pore compaction (Fig. 3A), which would be expected to have occurred during accretion.”

Speed Formation of the Earth

Earth_SpeedFormation

Extraterrestrial ribose and other sugars in primitive meteorites

Yoshihiro FurukawaYoshito ChikaraishiNaohiko OhkouchiNanako O. OgawaDaniel P. Glavin,Jason P. DworkinChiaki Abe, and Tomoki Nakamura
 

“The mineralogy and IOM structure of NWA 801 indicate that aqueous alteration of this meteorite was very limited. Thus, sugars in NWA 801 could have been formed before accretion of the CR2 parent body or during an early parent body aqueous alteration stage”

Impact crater data analysis of Ryugu asteroid illuminates complicated geological history

Assistant Professor Naoyuki Hirata of the Department of Planetology at Kobe University’s Graduate School of Science

„Through analyzing the location patterns and characteristics of the craters, they determined that the asteroid’s eastern and western hemispheres were formed at different periods of time.“

„. It is thought that this ridge formed in the distant past during a period when it only took Ryugu 3 hours to rotate. As the eastern hemisphere and western hemisphere were formed at different periods of the asteroid’s history- this suggests that there have been at least two instances where Ryugu’s rotational speed has increased.” – See also Nowadays: Sunlight still makes asteroids spin in strange ways at http://www.spacedaily.com/news/asteroid-03q.html

49 Ceti atomic carbon gas 10 times more than previously estimated Dr. Aya Higuchi

49Ceti_Aya_Higuchi

Hypothesis: Same Thermo Dynamic Principles apply to all observed Structure Formation in the Universe

Jets of Black Holes, Flares of Stars, the Solar Wind are caused by the same general principles.

The first jets of black holes were observed in 2018: Link and first described in 2001: Link
The pancake structure seems to be the norm in the universe Link1 and Link2. The rotation of structure is also a common charecterictics.

It seems that the distribution of the observable energy follows along a preferred plane with opposing directions within a rotating pancake structure and looks almost like a “flying saucer”. This could be an indication of an underlying energy cycle within these observable systems. But what is the cause?

The “ideal” state in the universe should be a vacuum filled with virtual particles. Yet this state does not seem to be stable enough on a large scale. At a certain scale instability seems to “destroy” this ideal state. In this state virtual particles do not return into the vacuum “field” but instead form observable matter. It seems like a flash of real particle creation is speeding suddenly through this vacuum field and hot gases form along the flash. If such events are happening what would we detected from these high energy matter flash creations on earth first and what do we detect in the aftermath of it.

The new state is bluntly speaking a disturbed state of the ideal. An ongoing formation process is then setting in with the main aim to return back to the ideal state of the vacuum. Yet this transformation process is going through different transformational phases. One of them is the birth of a star.

The mystery of the cosmic rays
„One of the best ways of accelerating particles is a shock front [that occurs] when a medium with a large velocity runs into a slower one, producing a shock— a sudden change in the properties of the medium,” Tjus explains. “In the case of the universe, the changed properties are velocity and density, and even magnetic fields. Luckily for the cosmic rays, the field becomes highly turbulent in that process. And the combination of a shock front with turbulence is a great particle accelerator.” Link

Vertiual Particles Conversion
The underlying concpet is the conversion of virtual particles in vacuum to real particles and vice versa. While the observable matter might come from a conversion of virtual particles into more “stable” real particles under which conditions would the opposite coversion from real particles into virtual particles take place?
Neutron Star  RX J1856.5-3754 Scientists Catch “Virtual Particles” Hopping In and Out of Existence: Link

Virtual Particles: “Forces—such as the electromagnetic repulsion or attraction between two charges—can be thought of as due to the exchange of virtual photons between the charges”

To examine: Planet Convection Cell Rings have opposing magnetic fields – exchanges of virtual particles?

References Collection at:

Grit

December 14, 2017

Distractors:

  • New ideas and Projects (Passion)

 

Focus:

  • Set one Goal, choose later another one (Passion)
  • Maintaining Focus on Projects that take more than a few months (Passion)
  • Interests change from year to year (Passion)
  • Obsessed with a certain idea or Project but lost interest after short time (Passion)

 

Stamina / Crisis Management:

  • No discourage through setbacks (Perseverance)
  • I finish whatever I begin (Perseverance)
  • Diligent, never give up (Perseverance)
  • Overcoming setbacks to conquer an important challenge (Perseverance)

 

Effort / Energy:

  • Hard working (Perseverance)

 

Grit has two components:

Passion

Perseverance

If the Yin-Yang philosophy is used:

Yin = Passion

Yang = Perseverance

They should nourish each other. A yin weakness or yang weakness should show up accordingly. In case any of the weaknesses is overcome successfully it should have an Impact on the grit score of Angela Lee Duckworth.

Would be interesting to measure the grit score at the beginning of a systemic disease and later when TCM treatment had an impact.

 

 


%d bloggers like this: