List of Grassroot Media Organisations Used by Prince Harry and Meghan Markle Mountbatten-Windsor Sussexroyal.com

January 12, 2020

Meghan & Harry are developing a new communication channel. They have defined the framework of their media channels to be used in the future.

RoyalRotaSystemGrassrootJournalism

Grassroot Media Organisations:

How they are defining grassroot media is still open. It is a term that had traction a few years ago but since then has not been used widely. Grassroot media could be citizen journalism which is also know as  public journalism, participatory journalism, democratic journalism, guerrilla journalism, or street journalism.

People Voice Media

The media organisations have yet to be defined. One potential candidate could be People Voice Media, United Kingdom.

Instagram accounts

On their instagram @sussexroyal account they are following one account since the beginning of January 2020: Good News Movement @goodnews_movement founded by @michellemfigueroa(Boston).
They plan to follow a new account each month. Reference (Daily Mail)

 

Young up-and-coming journalists:

It will show in the coming months who will qualify for this category. So far I have seen Caroline Halleman covering this topic quite extensively for the Town & Country Magazine (USA) which is owned by Hearst.

Specialist media:

 

Credible meida outlets:

 

Own offical channels:

Their own official channel sussexroyal.com was created by Article an agency in Canada (Founder: Ryan Fox).

Instagram is their official channel which is owned by Facebook (Mark Zuckerberg).

Megxit – Result of Negotiations win-lose (Meghan/Harry) or lose-lose (Meghan/Harry)?

According to the official speech of Prince Harry :

The Royal Family

The Royal Family is using twitter: @RoyalFamily

Official Statements by the Sovereign (The Queen) are published here:
https://www.royal.uk/statement-her-majesty-queen

Lawyers supporting sussexroyal.com:

libel lawyers Schillings

“proceedings in the high court over the misuse of private information, infringement of copyright and breach of General Data Protection Regulation (GDPR)” against Mail on Sunday reporting. See: https://www.theguardian.com/uk-news/2019/oct/01/meghan-sues-mail-on-sunday-for-publishing-letter-to-her-father

 

What is the Nasa Osiris Rex Mission?

December 13, 2019

Osiris Rex is a mission of Nasa. The aim of the mission is to bring back a sample from the asteroid Bennu to earth. Osiris Rex is the abbreviation for “Origins Spectral Interpretation Resource Identification Security – Regolith Explorer”. 

The mission started on Sept. 8, 2016. The spacecraft was launched from Cape Canaveral Air Force Station. An Atlas V rocket carried the spacecraft to space. The spacecraft Osiris Rex travelled for over 2 years until it enter the orbit around the asteroid Bennu on December, 31st. Osiris Rex travelled 228,931,288 km (142,251,307 mi) and reached a speed of 133,441 km/h (83,400 mph).

Osiris Rex is the third spacecraft of the New Fronti133,441 km/h (83,400 mph).ers Program of Nasa next to the New Horizon and Juno spacecraft. The cost of the Osiris Rex mission is 800 Million USD.

The decision for the Osiris Rex mission was taken in 2011 on May 25th.

osiris-rex-diagram_without_labels

Osiris Rex has the shape of a cuboid. It measures 3.1 m in width and 2.72 m heigh. The weight at launch of Osiris Rex on earth was 880 kg. The solar pannels (D) have a total size of 8.5 sqr meters.

Osiris Rex carries the following instruments:

  • OCAMS (OSIRIS-REx Camera Suite)
  • OVIRS (OSIRIS-REx Visible and IR Spectrometer)
  • OTES (OSIRIS-REx Thermal Emission Spectrometer)
  • OLA (OSIRIS-REx Laser Altimeter)
  • REXIS (Regolith X-ray Imaging Spectrometer)
  • TAGSAM (Touch-And-Go Sample Acquisition Mechanism)

In summer 2020 Osiris Rex will try to collect a 60g sample of hydrated, carbon-rich material from the asteroid Bennu.  The sampling site chosen on the asteroid Bennus is called after the bird Nightingale. The sampling site is near the north pole of the asteroid Bennu. The asteroid Bennu itself has a width of approximate 500 m. There are several reasons why this sampling site was chosen. It has lots of fine grained material. The temperature have always been very cool at the north pole. The dirt and rubble therefore have not had much alterations through heat.  The landing site is in a crator and only 20 m wide. Osiris Rex will need 6 m.

The sampling date is set for August, 25th 2020. In case the first collection fails Osiris Rex has still 2 more attempts to collect the sample. The mission will likely end in the first half of 2021. Over 100 people have dedicated thousand of hours to this mission.

This is the way the landing is planned:

Osprey is the second backup sampling site for Nightingale: see https://twitter.com/OSIRISREx/status/1205193577573150721?s=20
OspreyJpeg

The location is of Osprey is close to the Nightingale sampling site: see https://twitter.com/OSIRISREx/status/1205185345119064064?s=20

NigthinggaleOsprey

After Osprey the other back up sample sites are called Sandpiper and Kingfisher:

An overview of the asteroid Bennu and the sampling sites are given in this video:

 

Osirix-Rex has been scanning the asteroid Bennu for a year from a distance of 1.75 km. With this data the optimal sampling sites have been selected. As Osiris Rex discovered more rocks and boulders than envisioned over 3500 citizen scientists were involved to mark rocks, measure boulders, and map craters. Over 14 million annotations were collected in this so called CosmoQuest’s Bennu Mappers project based at the Planetary Science Institute in Tucson, Ariz. (CosmoQuest.org). http://www.bizsiziz.com/the-citizen-scientists-who-helped-map-bennu/

There is a live tracker for the Osiris Rex spacecraft: https://spacein3d.com/mission/osiris-rex. Current distance from earth is 270,308,918 (167,962,175). Osiris Rex also holds the record for the closest orbit around a space body.

Soon after the arrival Osiris Rex discovered Bennu to be an active asteroid. Bennu from time to time will eject particles into space. Some of these particles will after orbiting fall back while the others will escape into space. The first of such ejection was observed on Januar 6, 2019. There are several reasons for the ejections. One of them is thermal fracturing. https://www.nasa.gov/feature/goddard/2019/osiris-rex-explains-bennus-mysterious-particles

Dante Lauretta of the University of Arizona, Tucson, is the principal investigator for OSIRIS-REx, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing.

Official website of the Osiris Rex Mission: https://www.asteroidmission.org/

The Spaceship Weekly

 

 

Hermes 5 Aufgaben

October 22, 2019
  1. Aus was besteht eine Aufgabe?
    Aus mehreren Aktivitäten für die Erarbeitung der Ergebnisse sowie die Sicherstellung der Qualitätsanforderungen
  2. Wo wird die Aufgabe zugeordnet?
    Der verantwortlichen Rolle
  3. Wie werden Aufgaben gruppiert?
    Inhaltliche zusammenhängende Aufgaben werden als Modul gruppiert.
  4. Wo werden die Aufgaben erfasst?
    Im Projektstrukturplan werden sie den Meilensteinen zugeordnet.
  5. Welche Aufgaben enden mit einem Meilenstein?
    Aufgaben, die zu einem Entscheid führen
  6. Welche Aufgaben enthält das Modul Beschaffung?
    Angebote bewerten, Ausschreibung durchführen, Ausschreibung bearbeiten, Beschaffungsplan erarbeiten, Entscheid zum Zuschlag treffen, Entscheid zur Ausschreibung treffen, Vereinbarung erarbeiten
  7. Welcher Partner ist für die Aufgaben im Modul Beschaffung verantwortlich?
    Der Anwender
  8. Für welche Module und damit einhergehenden Aufgaben ist nur der Partner Anwender verantwortlich?
    Beschaffung, Einführungsorganisation, Informationssicherheit und Datenschutz, Projektführung, Projektgrundlagen, Projektsteuerung
  9. Für welches Modul ist nur der Partner Betreiber verantwortlich?
    IT Betrieb
  10. Welche Aufgaben enthält das Modul Einführungsorganisation?
    6 x E (3x Einführung und 3x Entscheid) = Einführung durchführen, Einführungskonzept erarbeiten, Einführung vorbereiten, Entscheid zur Abnahme treffen, Entscheid zur Betriebsaufnahme treffen, Entscheid zur Vorabnahme treffen
  11. Welche Aufgaben sind im Modul Entwicklung Adil?
    Entscheid zur Entwicklung mit Scrum treffen, Product Backlog führen, Releaseplan erarbeiten, SCRUM einführen, Sprints durchführen
  12. Welche Aufgaben enthält das Modul Geschäftsorganisation?
    3xG  = Geschäftsorganisation aktivieren, Geschäftsorganisation realisieren, Geschäftsorganisationskonzept erarbeiten
  13. Wer ist für die Aufgaben in dem Modul Geschäftsorganisation verantwortlich?
    Der Anwender und der Ersteller. Das einzige Modul in der jeweils zwei Partner für die Aufgaben verantwortlich sind.
  14. Welche Aufgaben gibt es im Modul Informationssicherheit und Datenschutz?
    Ein Entscheid für zu 3xI = Entscheid zum ISDS Konzept treffen, dann ISDS Konzept erstellen, ISDS Konzept überführen und ISDS Konzept umsetzen.
  15. Wer ist für die Aufgaben im Modul Informationssicherheit und Datenschutz zuständig?
    Nur der Anwender!
  16. Welche Aufgaben sind im Modul IT-Betrieb?
    3xB führt zum S wie System: Betrieb aktivieren, Betrieb realisieren, Betriebskonzept erarbeiten, System in Betrieb integrieren.
  17. Wer ist für die Aufgaben im Moul IT-Betrieb verantwortlich?
    Die Antwort steckt in der Frage im Wort Modul – der Betreiber und nur der
    Betreiber! Das einzige Modul in dem der Partner Betreiber auftaucht.
  18. Welche Aufgaben stehen im Modul IT-Migration an?
    Hier braucht es ein A und E um 3xM wie Migration zu machen:
    Altsystem ausser Betrieb setzen, Entscheid zur Abnahme der Migration treffen, Migration durchführen, Migrationskonzept earbeiten, Migrationsverfahren realisieren
  19. Wer verantwortet die Aufgaben im Modul IT-Migraion?
    Die Entscheidung verantwortet der Partner Anwender, den Rest erledigt der Ersteller.
  20. Welchen Aufgaben gibt es im Modul IT-System?
    Es braucht ein E, ein I und ein P und schon bekommt man 4 mal System:
    Entscheid zur Systemarchitektur treffen, Integrationskonzept erarbeiten, Prototyp realisieren, System aktivieren, Systemintegration vorbereiten, Systemkonzept erarbeiten, System realisieren
  21. Wer verantwortet die Aufgaben im Modul IT-System?
    Der Partner Anwender trifft die Entscheidung und dann ist der Ersteller für alle Aufgaben verantwortlich.
  22. Welche Aufgaben gibt es im Modul Produkt?
    Ganz überraschend fangen alle mit P an – 3P: Produkt aktivieren, Produktkonzept erarbeiten, Produkt realisieren
  23. Wer verantwortet diese Aufgaben?
    Alle 3 der Ersteller und beim Produktkonzept kommt noch der Anwender hinzu.
  24. Welche Aufgaben hat das Modul Projektführung?
    Die meisten von allen Modulen, es sind insgesamt 12.
  25. Wie kann man sich all die Aufgaben im Modul Projektführung merken?
    Gar nicht, oder? Änderungsmanagement führen, Entscheid zur Variantenwahl treffen, Intialisierung führen und kontrollieren, Leistungen vereinbaren und steuern, Phasenfreigabe vorbereiten, Probleme behandeln und Erfahrungen nutzen, Projektabschluss vorbereiten, Projektauftrag erarbeiten, Projekt führen und kontrollieren, Qualitätssicherung führen, Risiken managen, Stakeholdermanagment und Kommunikation führen
  26. Wer verantwortet all diese Aufgabe?
    Nur der Anwender und das geht nun gerade so weiter
  27. Welche Aufgaben hat das Modul Projektgrundlagen?
    Gott sei Dank, nur 3: Analyse der Rechtsgrundlagen erarbeiten, Schutzbedarfsanalyse erarbeiten, Studie erarbeiten
  28. Wer ist dafür verantwortlich?
    Ist doch klar, der Anwender
  29. Welche Aufgaben beinhaltet das Modul Projektsteuerung?
    3xEntscheid führt zu 2 weiteren Aufgaben: Entscheid zum Projektabschluss treffen, Entscheid zur Phasenfreigabe treffen, Entscheid zur Projektfreigabe treffen, Initialisierung beauftragen und steuern, Projekt steuern
  30. Und ist doch klar welcher Partner dafür verantwortlich ist?
    Der Anwender und nur der Anwender.
  31. Welche Aufgaben gibt es im Modul Testen?
    Wer hätte das gedacht es sind 4xTs wie: Test durchführen, Testinfrastruktur realisieren, Testkonzept erarbeiten, Testkonzept und- infrastruktur überführen
  32. Und wer ist für die Aufgaben zuständig?
    Ah, diesmal nur 3 mal der Anwender und einmal der Betreiber. Der Betreiber muss die Testinfrastruktur realisieren und der Anwender kann sich endlich mal frei nehmen.

 

Referenz: http://www.hermes.admin.ch/onlinepublikation/index.xhtml?element=kategorie_aufgaben.html

Hermes 5 Rollen

September 29, 2019

Es gibt 18 Rollen in der Hermes Projektmethode.

Im folgenden ein paar Merksätze.

  1. Leiter Rollen gibt es nur in der Hierarchieebene Führung. (Projektleiter, Teilprojektleiter)
  2. Verantwortliche Rollen gibt es nur in der Ausführung (Anwendungsverantwortlicher, Betriebsverantwortlicher, Geschäftsprozessverantwortlicher, ISDS-Verantwortlicher, Testverantwortlicher)
  3. Mitglieder Rollen sind nie in der Ausführung. Projektausschussmitglied ist in der Steuerung  und Fachausschussmitglied ist in der Führung.
  4. Rollen die mit dem Wort Projekt beginnen sind nie in der Ausführung und hauptsächlich in der Führung. Projektleiter, Teilprojektleiter und Projektunterstützung sind in der Führung und das Projektausschussmitglied ist in der Steuerung.
  5. Bis auf den Qualitäts- und Risikomanager sind alle restlichen Rollen, die nicht unter 1-4 fallen in der Ausführung.
  6. Mitglieder sind immer gleichzeitig auch Anwender, Ersteller und Betreiber.
  7. Neben den Mitglieder Rollen ist der Teilprojektleiter auf der Führungsebene Anwender, Ersteller und Betreiber.
  8. Die Fachspezialisten sind weder Anwender, Ersteller noch Betreiber
  9. Alle Verantwortlichen Rollen bis auf den Testverantworticher sind jeweils nur in einer der Hauptrollenkategorien (Anwender, Ersteller, Betreiber).
  10. Nur der Betriebsverantwortliche ist in der Partnerkategorie Betreiber.
  11. Nur der Testverwantwortlicher ist in allen 3 Partnerkategorien wie Anwender, Ersteller und Betreiber vertreten.
  12. Die Rolle Projektunterstützung und Business Analyst sind die Einzigen, die in zwei Partnerkategorien vorkommen wie Anwender und Ersteller. Sie sind niemals Betreiber.
  13. Bis auf die Fachspezialisten, Betriebsverantwortlicher und Entwickler sind alle Rollen mindestens Anwender.
  14. Neben dem Testverantwortlicher ist der Tester und IT- Architekt sowohl Anwender, Ersteller und Betreiber.
  15. Rollen sind immer nur einer Hierarchieebene zugeordnet.

Lernfragen zu Rollen:

  1. Was regelt die Rolle in Projektorganisation?
    Die Rollen regeln die Aufgaben, Kompetenzen und Verantwortung der Projektbeteiligten.
  2. Wie wird jede Rolle spezifiziert?
    Mit einer Rollenbeschreibung
  3. Welche Rollen müssen in jedem Projekt besetzt sein?
    Die Rollen Auftraggeber, Projektleiter und Fachspezialist.
  4. Wie weit beschreibt HERMES die Rollen der Fachspezialisten?
    HERMES beschreibt die Rollen so weit, dass diese als Grundlage für ein gemeinsames Verständnis dienen können.
  5. Welchen Partnern sind die Rollen zugeordnet?
    Anwender, Ersteller und Betreiber
  6. Wo wird die Rollenbesetzung festgehalten?
    Im Projektmanagementplan
  7. Kann eine Person mehrere Rollen wahrnehmen?
    Ja, sofern kein Interessenkonflikt dadurch besteht
  8. Kann eine Rolle von mehreren Personen besetzt werden?
    Ja, z.B. Tester
  9. Bei welchem Partner ist der Auftraggeber angesiedelt?
    Beim Anwender
  10. Wo muss der Auftraggeber das Projekt vertreten?
    In der Führung der Stammorganisation und den Controlling und Vergabestellen.
  11. Was stellt der Auftraggeber für das Projekt sicher?
    Er stellt sicher, dass alle massgebenden Stakeholder im Projekt vertreten sind.
  12. Kann der Auftraggeber gleichzeitig der Projektleiter sein?
    Nein, es müssen getrennte Personen sein.
  13. Wer bestimmt die Mitglieder im Projektausschuss?
    Der Auftraggeber
  14. Was bestimmt der Auftraggeber noch?
    Die Stimmrechte der Projektausschussmitglieder
  15. Welche Rolle rapportiert direkt an den Auftraggeber?
    Die Qualitäts- und Risikomanager Rolle
  16. Wer bestimmt den Projektleiter?
    Der Auftraggeber
  17. Kann der Teilprojektleiter angesiedelt bei Partner Ersteller auch der Projektleiter sein?
    Nein, das geht nur beim Teilprojektleiter des Partners Anwender.
  18. Welche zusätzlichen Rollen kann der Business Analyst in kleinen Projekten übernehmen?
    Die Rolle Projektleiters oder des Teilprojektleiters.
  19. Wer testet?
    Jeder Partner (Anwender, Ersteller, Betreiber) testet in seinem Verantwortungsbereich.
  20. Wer bestimmt den Testverantwortlichen?
    Jeder Partner kann einen Testverantwortlichen einsetzen.
  21. Kann der Anwender das Testmanagement delegieren?
    Ja entweder an den Ersteller oder Betreiber
  22. Wer übernimmt die Gesamtverantwortung für das Projektergebnis?
    Der Anwender auch wenn er das Testmanagement delegiert.
  23. Was beschreiben die Rollen?
    Die Verantwortung, die Kompetenz und die benötigten Fähigkeiten der Projektbeteiligten.
  24. Was wird den Rollen zugeordnet?
    Die Aufgaben und die Ergebnisse.
  25. Welche Rolle ist immer eine Aufgabe zugeordnet?
    Die verantwortliche Rolle für die Ergebnisse der Aufgabe
  26. Was gilt für die Ergebnisse in Bezug auf Rollen?
    Es werden alle Rollen aufgeführt, die an der Erarbeitung beteiligt sind und sind projektspezifisch festgelegt.
  27. Was gilt für alle Rollenbeschreibungen?
    Sie sind gleich strukturiert.
  28. Welche Elemente enthält die Rollenbeschreibung?
    Beschreibung, Verantwortung, Kompetenzen (Befugnis) , Fähigkeiten  (unterscheidet zwischen Kenntnissen und Erfahrung), Beziehungen zu Modulen, Aufgaben und Ergebnissen.

 

Referenz: http://www.hermes.admin.ch/onlinepublikation/index.xhtml?element=kategorie_rollen.html

Teams in Kriesen = Neues Lernen & Neue Lernstrategien entwickeln und nicht beschuldigen – Beispiel VFB Stuttgart

November 4, 2018

Beispiel VFB Stuttgart 1. Bundesliga (2018):
Wir Botschaften helfen nicht. Jeder Spieler einschließlich Trainer und Management sollte nur von “was war mein Anteil” an dieser Situation sprechen und davon was sie schrittweise selbst verbessern können. Dabei geht es nicht um die Schuld sondern nur um eine realistische reflektierte Betrachtung des eigenen Beitrags.

Vorteile der Anteilsanalyse (Beitragsanalyse) :
Wenn ich Profiteamsportler nach ihren besten Trainer frage,
dann nennen sie mir den Trainer von dem sie am meisten gelernt haben. Lernen
und damit der Lernprozess ist entscheidend und nicht der Erfolg oder das
Ergebnis.

Anteilsanalyse Schritt 1:
Jeder Spieler erinnert sich an sein bestes Spiel in seiner Karriere für die es eine
Aufzeichnung gibt. Dann schaut er dieses Spiel gemeinsam mit allen anderen
Spielern an. Jeder macht Notizen zum Verhalten und Körpersprache, Können etc
des Spielers und teilt es mit ihm. Die Analyse kann auch in Gruppen zu je 3 Spielern
durchgeführt werden.

Anteilsanalyse Schritt 2:
Jeder Spieler erinnert sich an sein schlechtestes Spiel in der Karriere für die es
eine Aufzeichnung gibt. Dann schaut er dieses Spiel mit allen anderen Spielern
an. Jeder macht Notizen zum Verhalten und Körpersprache, Können etc des
Spielers und teilt es mit ihm. Die Analyse kann auch in Gruppen zu je 3 Spielern
durchgeführt werden.

Anteilsanalyse Schritt 3:
Delta aus Anteilsanalyse1: mein bestes Spiel und 2: mein schlechtestes Spiel in Karriere.
Dies mit dem letzten Spiel vergleichen und die grösste(n) momentane Stärke(n) und die grösste
momentane(n) Schwäche(n) bestimmen.

Anteilsanalyse weitere Vorteile:
Dieser intensive Lern- und Reflexionsprozess führt zu einem optimalen
Trainingsplan. Der Spieler wird sein bisher bestes Spiel übertreffen und
erstaunt sein, welches Potential er nach oben hat bzw kehrt die Freude am Sport
zurück. Zudem wächst das Verständnis über die eigene Fähigkeiten und die der Mitspieler.
Die Mannschaft wächst durch den intensiven Lernprozess zusammen.
Es bildet sich bzw. fördert die sogenannte “psychological safety” – die Sicherheit, das Selbstvertrauen im Team.

Anteilsanalyse weitere Optionen:
Use the wisdom of the crowd: Fans befragen welches das beste und das schlechtes Spiel
des Spielers gewesen ist und ebenfalls um eine Beurteilung der gezeigten Stärken und Schwächen
bitten. Alternative ausgewählte Fans oder externe Experten / ehemalige Spieler oder Trainer in Ausbildung ebenfalls zu einer Anteilsanalyse 1 und 2 einladen.

Zusätzlich kann auch eine kollegiale Beratung als Intervention verwendet werden. Der Spieler / Trainer stellt sein momentanes Problem / Delta dar, dass er momentan bearbeitet. Die Teamkollegen und/oder externen Experten analysieren die Problemstellung / Delta und generieren Lösungsvorschläge.

Lernprozess fördern:
Der Lernprozess ist wichtiger als das Ergebnis. Ergebnisorientierung führt meist zu einer  Verkrampfung und zu negativen Resultaten. Lernen findet nicht mehr statt, bzw.
herrscht Ratlosigkeit über Verbesserungsmöglichkeiten vor. Es wird ein Schuldiger oder Schuldige
gesucht, die Selbstreflexion und Selbstentwicklung stoppt.
Wird der Lernprozess aufrechterhalten steigt durch den Lernfortschritt des Spielers der Wert des Spielers.

In der momentanen Krisensituation kann es nur noch um den Lernprozess gehen.
Anstatt auf das Ergebniss wie Verhinderung des Abstiegs ist es besser auf positivere Indikatoren
zu fokusiern wie z.B. darauf als Verein, der die beste positive Lernumgebung für Spieler bietet.

Angesicht der Krise ist es besser Ergebnisziele fallen zu lassen (z.B. in einem Ritual zu verabschieden  und stattdessen die Fokussierung auf Lern-, Entwicklungs- und Prozessziele lenken. Es gilt eine Umgebung zu schaffen in der die Spieler sich auf jede Trainingseinheit und Spiel freuen und mit optimaler unerschütterlicher Konzentration spielen können

Es gibt so viele Prozessziele mit dem sich der Verein von den anderen Vereinen  abheben kann, wie z.B. durch die innovativsten und abwechslungsreichsten Trainingsmethoden, die besten mentalen Fitnessentwicklungsmethoden, dem Einsatz von Biohacking, die beste Vorbereitung auf die nächste Karriere nach dem Sport,  usw.

 

 

 

 

 

 

 

Star HD 163296

April 21, 2018

Cometary Dust in the Debris Disks of HD 31648 and HD 163296: Two “Baby” beta Pics
1998 Authors: Michael L. SitkoCarol A. GradyDavid K. LynchRay W. RussellMartha S. Hanner

https://arxiv.org/abs/astro-ph/9807229

Page 4: “crystalline olivine condenses at the high temperatures (>1200 K) that might have been typical of the inner solar nebula,”
“This scenario requires that these grains then be transported to the
region of comet formation and be mixed with ice grains that probably condensed at temperatures below 30 K (Crovisier et al. 1997).”

Explanation: Olivine Crystaline form in the planet forming convection cells in the inner solar nebula at high temperature (>1200 K) while ice (grains) will condense in the outer region of the gas/dust disk of the star. Through jets of the star pieces of crystalline olivine are transported to the outer region. The jets will melt the ice. When jets retreats and the region starts to cool bleow 30 K the ice grains and the crystalline olivine will condense and form the comets.

Meridional flows in the disk around a young star
2019 Authors: Richard TeagueJaehan BaeEdwin Bergin

https://www.nature.com/articles/s41586-019-1642-0

Page 1: “Protoplanetary disks are known to posses a stunning variety of
substructure in the distribution of their mm sized grains, predominantly seen as rings and gaps1, which are frequently interpreted as due to the shepherding of large grains by either hidden, still-forming planets within the disk2 or (magneto-)hydrodynamic instabilities 3.”
“To relate the gas velocities to the local sound speed, we use the
brightness temperature of the optically thick line emission as a measure
the local gas temperature5, finding values spanning between ≈ 90 K
in the inner 30 au and dropping to 30 K at 400 au. ”

The Herbig Ae star HD 163296 in X-rays

2005 Authors: Douglas A. SwartzJeremy J. DrakeRonald F. ElsnerKajal K. GhoshCarol A. GradyEdward WassellBruce E. WoodgateRandy A. Kimble

Page 1: “HD 163296 is a nearby (122 pc) Herbig Ae star (A1Ve,AV =0.m25) with an effective temperatureTef f=9300 K,luminosity log(L⋆/L⊙)=1.48+0.12−0.10, massM⋆ = 2.3M⊙,and radiusR⋆ = 2.1R⊙ (van den Ancker, de Winter, &Tijn A Djie 1998).

“HD 163296 has a strong infrared excess (Hillenbrand et al. 1992; Meeus et al. 2001) and variable Balmer series emission lines (Baade & Stahl 1989; Pogodin 1994;
Beskrovnaya et al. 1998)”

Page 2: “The large infrared excess arises fromheated, optically thick dust within a circumstellar disk(Hillenbrand et al. 1992; Meeus et al. 2001). The disk has a radius of ∼450 AU (3.′′7) viewed at ∼60◦inclination (Mannings & Sargent 1997; Grady et al. 2000). The time-variable double-peaked and P Cygni Balmer and UVemission line profiles arise from a stellar wind, an extended chromosphere, and/or rotation (e.g., Catala et al. 1989).
Radio continuum observations (Brown, Perez, & YusefZadeh 1993) of HD 163296 also suggest wind-driven mass loss. Orthogonal to the disk is an axially-aligned chain
of Herbig-Haro nebulae extending several seconds of arc above and below the disk (Grady et al. 2000). A Lyαbright jet extending 6′′ along the SW arm of the HerbigHaro flow has also been discovered (Devine et al. 2000).”

Comet Formation – the Convection Cell Condensation Model

April 21, 2018

ConvectionCellRingCondensationFormation

All of us know the accretion model. All bodies in our universe from our stars, planets to comets and asteroids (small bodies)  are formed due to the force of gravity .  In 1589 Galileo conducted his first experiments with gravity in the Leaning Tower of Pisa. Later in the 1660s Newton developed the law of motions  which includes the law of gravity at the unviersity of Camebridge.

Gravity is used to explain why our solar system and planets where formed and stay together and why planets just do not vanish into the vacuum of the space around us. So far so good. This model has made some very good predictions and led to discovery of further planets in our solar system.

The first time gravity has failed us was when scientiest
 started research on atoms and particles. Soon in other structure forming processes accretion is not used as the main force to explain it. A good example is the hail forming process where a thermo dynamics (temperature differences) is key.
Lately the same applies to why our earth has kept her oceans while Mars lost all of his. In this case it is the planetary magnetism and not the gravity that is decisive.

Reference:
Planetary Magnetism as a Parameter in Exoplanet Habitability
Planetary Magnetism as a Parameter in Exoplanet
Habitability
https://arxiv.org/pdf/1807.04776.pdf

Until 2013 we saw our solar system surrounded by a vacuum space without any boder.  This view has changed with the IBEX mission (Interstellar Boundary Explorer Spacecraft).  Retention Theory: https://iopscience.iop.org/article/10.1088/0004-637X/764/1/92/meta and
https://www.nasa.gov/mission_pages/ibex/news/ribbon-explained.html

Folie2

Viking 2 has crossed the boundary last year.
“Voyager 2 Illuminates Boundary of Interstellar Space”
https://www.jpl.nasa.gov/news/news.php?feature=7530

“The plasma inside the heliosphere is hot and sparse, while the plasma in interstellar space is colder and denser. ”

Ed Stone, project scientist for Voyager and a professor of physics at Caltech

News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

“NASA’s Voyager 2 Prober Enters Interstellar Space” https://voyager.jpl.nasa.gov/news/details.php?article_id=112

  • American Geophysical Union (AGU) in Washington
    Plasma Science Experiment (PLS)
    John Richardson, principal investigator for the PLS instrument and a principal research scientist at the Massachusetts Institute of Technology in Cambridge
    Nicola Fox, director of the Heliophysics Division at NASA Headquarters
    Suzanne Dodd, Voyager project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California

“The Voyager Interstellar Mission is a part of NASA’s Heliophysics System Observatory, sponsored by the Heliophysics Division of NASA’s Science Mission Directorate in Washington. JPL built and operates the twin Voyager spacecraft. NASA’s DSN, managed by JPL, is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions. The Commonwealth Scientific and Industrial Research Organisation, Australia’s national science agency, operates both the Canberra Deep Space Communication Complex, part of the DSN, and the Parkes Observatory, which NASA has been using to downlink data from Voyager 2 since Nov. 8.”

And lately rotating Gas Rings have been discovered at the star HD 163296

Meridional flows in the disk around a young star
2019: Authors

https://www.nature.com/articles/s41586-019-1642-0

In the convection cell condensation model the planets and small bodies would form within these gas rings while in the accretion model the planet would form in the gaps between these rings.

PlanetFormationGasConvectionRing

For the accretion model it is most complex to explain the formation of all the small bodies in our solar system because comets consists/asteroids consits of mainly dust and ice. The composition of the dust is known due to several space mission such as Stardust, Deep Impact, Rosetta and lately a Japanese Mission.

The dust composites formed at different temperatures and different times yet the nucleus formed in the outer region of our solar system. One of the most complex ones is 81P/Wild 2.
https://solarsystem.nasa.gov/asteroids-comets-and-meteors/comets/81p-wild/in-depth/

Comet_Asteroid_Formation

Small body database:
https://ssd.jpl.nasa.gov/sbdb.cgi

Based on the convection cell condensation theory there could be a link between the characterics of the star and the type of exoplanets formed (thermo dynamics).
Exoplanets Database:
https://exoplanetarchive.ipac.caltech.edu/

High-temperature condensation of iron-rich olivine
in the solar nebula
1989: Herbert Palme and Bruce Fegley Jr.

Page 1: “Olivine is the most abundant mineral in many chondritic meteorites”.

“FeSiO 3 and Fe2SiO 4 were stable at T < 600 K in the solar nebula”.

Page 2: “formation of the FeO-bearing
olivines in the rims and veins occurred at comparatively
high temperatures. However, as noted
earlier in section 1, this is not possible in a solarcomposition
gas because formation of FeO-bearing
olivines with the composition Fa20 requires temperatures
of -425 K [9] while more-fayalitic
olivines, like those found in Allende, require even
lower temperatures.
As originally shown by Palme and Fegley [18],
a gas phase that is significantly more oxidizing
than a solar composition gas is needed for the
formation of FeO-bearing olivine at high temperatures
in the solar nebula. In the present paper we
calculate the conditions required for condensation
of FeO-bearing olivine and show that an oxygen
fugacity several orders of magnitude greater than
that of a solar-composition gas is needed for condensation
of the observed mineral assemblages.

See figure 2: Condensation temperature

“Condensation temperatures of corundum, forsterite and
various Fe-bearing phases (Fe-metal, wiistite, magnetite) as
function of the oxygen fugacity of the nebula (expressed as
HEO/H 2 ratio). The field for possible forsterite-fayalite solid
solutions is indicated. The condensation curves for wiistite and
magnetite are shown for comparison. They were calculated
assuming no removal of Fe from the gas by condensation of
metal. In the classical condensation model Fe would condense
as metal and equilibrate at low temperatures with silicates to
produce FeO-rich olivine and pyroxene. At more oxidizing
conditions a solid solution of forsterite and fayalite would
condense before Fe-metal. The amount of fayalite would increase
wi.th increasing H20/H 2 ratios of the gas.”

“For example, the condensation
temperatures of forsterite and metallic
iron at 10 -6 atm in solar-composition gas are
1234 K and 1205 K, respectively.
Oxygen fugacities higher than those”

Page 5: “In a gas of solar composition, enstatite condensation
begins a few tens of degrees below the
condensation temperature of forsterite. For example,
at a pressure of 10 -3 atm and a solar HzO/H 2
ratio, forsterite would condense at 1429 K. If
condensation of forsterite is neglected, enstatite
would condense at 1426 K.”

Kuiper Belt and Oort Cloud:

nasa-pathsofspaceprobesthroughthekuiperbelt-20190105

solar system and Oort Cloud with distances (Sun .... ?-Centauri

What is the similarity between a foundling of a glacier and the Kuiper Belt and the  Oort Cloud?

cloughmore_stone2c_rostrevor2c_july_2010_280129

Foundling of Cloughmore

Similar to foundlings of retreated glaciers, the Oort Cloud and Kuiper Belt are the withness of a very active sun during formation of the solar system. Oort Cloud comets condensed when the sun was most active and pushed these left overs to the furthest distant to the sun out. Kuiper Belt comets condensed when the young sun had it second highest acitvity peak. Thus Oort Cloud comets are of similar composition. The same applies to the Kuiper Belt objects.

Book:
Hans Rickman: Origin and Evolution of Comets:Ten Years after the Nice Model and One Year after Rosetta (Advances in Planetary Science Book 2)

“A component of particular interest hosts the so-called calcium-aluminum-rich inclusions or CAIs (Sec. 2.6.2). These have a common age (4 567 Myr) that exceeds all other ages of solar system materials, so their formation is taken as the marker of the origin of the solar system. The whole-rock ages of the chondrites containing the CAIs are typically”

“Most of the short-lived radioisotopes that existed in the infant solar system can be explained either as products of stellar nucleosynthesis in the Galactic disk at relatively large distances, which is continuously ongoing, or as results of the corpuscular irradiation of the solar nebula by the solar wind, which was very strong when the Sun was formed.”

“An unexpected result is a strong heterogeneity of the olivine and pyroxene compositions between individual grains,”while Hartley 2 may rather be referred to the Scattered Disk (see Sec. 1.4), the difference in D/H ratio might reflect a difference in formation conditions at different distances from the Sun — a fundamental issue when discussing comet origins.”  which indicates very different formation conditions.”

“CAI stands for Calcium–Aluminum-rich Inclusions. These occur in many chondritic meteorites and consist of minerals with extremely high condensation temperatures, often involving calcium and aluminum.”

“The most prominent of these are C2, C3 and CN, each shining in its particular wavelength bands. The so-called Swan bands of C2 are often dominant.”

“Oversimplification of the dynamical model used is extremely risky, as was seen during the ESA/Giotto flyby of comet 1P/Halley in 1986, when the spacecraft was hit by a grain far too large (its mass was ∼1 g) to be compatible with the advance predictions. ”

“The DWR (dust/water ratio) would be ≃6, but Rosetta/ROSINA data for CO and CO2 had shown these molecules to contribute ∼50% in mass relative to H2O (Hässig et al. 2015).” Comets are now called dirt/dust balls with ice.

Book:
Asteroids: Astronomical and Geological Bodies (Cambridge Planetary Science Book 17) (English Edition)” von Thomas H. Burbine

“These spectral observations of asteroids showed that these bodies have a wide variety of surface mineralogies and experienced a wide range of heating.”

“Meteorites were found to range from those that melted (e.g., irons, stony-irons, achondrites) to those that experienced minimal heating (e.g., ordinary chondrites, carbonaceous chondrites, enstatite chondrites).”

Modeling a Carrington-scale Stellar Superflare and Coronal Mass Ejection from κ
1Cet

Book (Kindle):
“Comets And Their Origin: The Tools To Decipher A Comet (English Edition)” von Uwe Meierhenrich

“One lesson that needs to be kept in mind from previous missions to comets is that every comet has yielded surprises that upset one or another of our conceptual understandings of comets. Rosetta should be no exception to this pattern. We cannot predict whether the surprises will be in chemical composition, in nuclear structure, in nuclear topography and surface processes, or in coma flow properties.”

“The 95P/Chiron comet, which has an estimated diameter of 200 km, seems to be exceptional in terms of its age and orbit”

“one example is the formation of surface craters through internal explosions that are similar to steam-explosion craters on Earth called maars [15]. Crystallization of amorphous ice at depths of a few tens of meters [16] might also release heat that triggers cometary outbursts”

“closer examination reveals that the cometary tail is composed of two morphologically different tails (see Figure 1.3), a thin long tail (type I tail), which is the plasma tail, and a diffuse curved tail (type II tail), which is the dust tail. The two tails point in two different directions, and it is now known that both tails do not point exactly in the antisolar direction.”

“Forces other than gravity determine the behavior of these particles; in particular, solar radiation pressure is known to generate a significant interaction with the dust particles. The solar radiation pressure force originates from the interaction of electromagnetic radiation (the sunlight) with matter and describes the momentum transfer from the radiation field, or photon stream, to the scattering and absorbing dust [19].”

“The temperature at which comets formed is assumed to be greater than 25 K because highly volatile species such as helium and the other noble gases, along with molecular nitrogen, methane, and carbon monoxide, exhibit very low abundances [8].”

“The IKS-determined temperature of the nuclear surface was measured to be 300–400 K [60], which is much greater than previously thought [53]. Other references suggest a surface temperature of ∼330 K [1]. This temperature was also much greater than the expected 215 K, which is necessary to sublimate water ice [18].”

“The apparently contradictory presence of ice in the cometary nucleus and the comet’s high surface temperature can be explained by the assumption that the nucleus is covered by a thin insulating layer [60] (or mantle) of a black, porous, refractory substance with a thickness of ∼1 cm.”

“some comets are thought to have heated their interior through radioactive decay processes, which are primarily due to the short-lived radioisotope 26Al.

“The detection of the PAH anthracene was thus reported. In 2004, this technique was applied to the three peaks at 371, 376, and 382 nm to suggest a tentative detection of the PAH pyrene in the coma of comet Halley [68].”

“In 2006, microscopic and X-ray analyses of Stardust’s impacted dust particles (Figures 1.28 and 1.29) demonstrated, somewhat surprisingly, that the impacted particles were not exclusively interstellar grains of submicron size. Abundant high-temperature minerals, such as forsterite (Mg2SiO4), which has a condensation temperature of 1400 K, enstatite (MgSiO3), and calcium- and aluminum-rich inclusions (CAIs), were identified in the impacted cometary particles; such materials must have formed in the hot and innermost regions of the solar nebula, well inside the orbit of Mercury [132]”

“In summary, the data obtained by DS1 provided unique information about the surface of comet Borrelly’s nucleus, which is hot, dry, and extremely dark.”

“A cometary nucleus can be characterized as an asymmetric, kilometer-sized solid object with an irregular tar-type crust that contains dirty ices in a porous matrix of refractory material and that rotates toward the Sun.”

“contradicts the Whipple theory of how comets are made: that they consist of dust particles held together by ice [50]”

“Its spectacular and unexpected data revealed that cometary particles contain not only hydrogen (with its isotopes, deuterium and tritium) and oxygen but also carbon and nitrogen atoms. One of the significant surprises of the Halley encounters was the detection of large amounts of carbonaceous dust that was rich in H, C, O, and N, the so-called CHON particles [1].”

“Giotto’s measurement of the geometric albedo p of the cometary surface was a tremendous scientific surprise. Estimations for p varied; some values were as high as p = 0.6 [18].12 Giotto observed that the surface of 1P/Halley’s nucleus is dark and exhibits a very low geometric albedo of p = 0.04, thereby indicating that the comet’s nucleus at full phase has about one-third the reflectivity of the moon [10, 98]. The albedo value is one of the lowest of all known objects in the Solar System [98]: only some C-type asteroids and Saturn’s moon Iapetus exhibit smaller values as low as p = 0.01 [102]. Keller et al. [98] concluded that most of the surface of the nucleus of comet 1P/Halley must be covered by a nonvolatile insulating crust of dark material that traps light in tiny cavities between fluffy dust particles because of its high porosity. The temperature of the crust must become much hotter than the equilibrium temperature for the sublimation of water ice [98]. Keller et al. [10] suggests that the crust or mantle is more than several centimeters thick.”

“The volume of 1P/Halley’s nucleus was determined to be 420 km3, and its density was determined to have the quite low value of 0.55 ± 0.25 g cm−3, perhaps only 0.2 g cm−3 [10]. Comets are thus the lowest density bodies in the Solar System.”

“Britt believes that the spherical shape of the nucleus of comet Wild 2 and its impact-cratered surface hint at its direct formation from the dust and gas of the presolar disk. Wild 2 lacks major structural discontinuities and heterogeneities, suggesting that it did not form from the juxtaposition of large blocks of physically dissimilar materials acquired either by the accretion of various planetesimals or by extensive collisional processing [15].”

“The surprising and most prominent signal in the positive-ion spectra at m/z = 90 was more difficult to understand. Kissel et al. proposed that the C6NH+ ion originated from methylpyridine-like alicyclic structures.”

“The CIDA mass spectra of Wild 2 dust grains are similar to the spectra obtained from comet 1P/Halley, thereby indicating that the two comets have similar chemistry even though they have different ages [113].”

“Sophisticated laboratory analyses of returned dust particle samples from Wild 2 revealed that many of the silicate grains are high-temperature minerals that formed in the inner regions of the solar nebula; this result considerably modified our understanding of the formation of comets [132].”

“The Deep Impact data indicated that the nucleus of 9P/Tempel provided signs of past geological activity; it is much more than a primordial “dirty snowball” [146]”

“FTIR studies confirmed the presence of crystalline silicates in the Wild 2 samples, thereby indicating that this comet is a mixture of presolar and Solar System materials [140]”

“quantified the hydrogen and deuterium isotopes in five dust particles captured by Stardust. The D/H values obtained were reported to range from typical terrestrial values up to moderate D/H enhancements of approximately three times the D/H value of mean ocean water. The D enrichments were associated with carbon, and it is important to note that these enrichments might have been modified during impact and cannot be ascribed to Wild 2 water”

“particles captured by Wild 2 performed by Zolensky et al. revealed the presence of primarily silicates [129, 130], such as olivine [(Mg,Fe)2SiO4], and low-Ca pyroxene [(Mg,Fe)SiO3] and also ubiquitous Fe-Ni sulfides, including troilite (FeS) [130] and Fe-Ni metal; these compounds require a wide range of formation conditions [137]. In agreement with the data provided by Brownlee et al. [132], these data strongly support the formation of mineral cometary constituents at very different locations in the protoplanetary disk [137]”

“Michael F. A’Hearn from the University of Maryland concluded from the Stardust data that even more extensive and earlier mixing of the material took place in the disk in which the planets of the Solar System formed [36]”

“inner Solar System materials – which account for ∼10% of the comet’s mass – must have been transported beyond the orbit of Neptune, either by ballistic transport above the nebular midplane or by turbulent transport in the midplane [132]”

“Interestingly, these authors found that the abundance ratio of ethane relative to water increased after impact by a factor of 1.8, whereas the abundance ratios for methanol and hydrogen cyanide remained unchanged. The data hint at the possibility that the nucleus of 9P/Tempel is inhomogeneous in its composition [154].”

“Fe-rich fayalite were found to be the dominant olivine species in a 3.9 abundance-ratio-by-mole fraction, suggesting that the temperature for the incorporation of olivine into the comet was between 1100 and 1400 K [153].”

“The presence of high-temperature crystalline silicates (olivines) was surprising and requires thermal heating of material near the young Sun, where temperatures >1000 K were reached only inside the present orbit of Mercury [153].”

“Furthermore, Zolensky and coworkers point to the fact that the mineralogy reported by Lisse et al. for comet 9P/Tempel is in clear contrast with the lack of aqueous alteration products in Wild 2 that was demonstrated by the Stardust mission [137]. This mineralogical difference could be due to differences in the geological histories of Jupiter-family comets [137].”

“Moreover, Sugita and colleagues [156] found that the high mass ratio of crystalline silicates compared with amorphous silicates demonstrates that comet 9P/Tempel, which is a Jupiter-family comet, contains many high-temperature components of the solar nebula, similar to Oort-cloud comets.”

Küppers, Keller, and colleagues [155] concluded that the dust/ice mass ratio is most likely >1, thereby suggesting that comets are “icy dirtballs” rather than “dirty snowballs,” as is commonly believed [148]”

“In 2010, prior to EPOXI’s 103P/Hartley observations, Belton [176] proposed a remarkable possible scenario for the long-term evolution of cometary surfaces near the Sun. This scenario suggested an evolutionary sequence by which Jupiter-family comets might evolve from a Wild 2-type morphology to a Tempel 1-type morphology and, finally, to a Hartley 2-type morphology [175].”

“the authors argue that the first class of particles, olivine IDPs, originate from comets captured from eccentric orbits; the second class of particles, pyroxene IDPs, originate from comets with prograde orbits; and the third class of particles, hydrous layer and lattice silicate IDPs, originate from asteroids.”

“These claims about successive and stepwise comet formation are in agreement with observations of comet splitting, such as comet West, which split into four fragments in March 1976, thereby indicating that the building blocks, the cometesimals, may not be tightly bound together [9].”

“addition, data from the Deep Impact mission regarding the dust composition of comet Tempel 1 (see Section 1.8) revealed a great heterogeneity, which is consistent with the idea that the nucleus is made of cometesimals (smaller chunks) with differing compositions [37].”

“A’Hearn [37] proposed extensive radial mixing of cometesimals in the outer parts of the early Solar System rather than formation of cometary nuclei from cometesimals that condensed at a uniform distance from the proto-Sun, thereby making it difficult to determine a precise location for the formation of comets.”

“In ortho-water, the nuclei of the two hydrogen atoms have the same spin, whereas in para-water, the two hydrogen atoms have different spins”

“The temperature Tspin is assumed to depend on the temperature during formation of the water molecule.”

“the cometary Tspin values vary from 20 to 60 K and cluster at ∼30 K [91].”

“Observations by Rodgers et al. [122] of the HNC and HCN abundances in the coma of comet C/2002 C1 (Ikeya–Zhang) as a function of its heliocentric distance demonstrated that the recorded amounts of HNC cannot be synthesized in the cometary coma by chemical reactions, thus suggesting degradation of complex organic material as the source of HNC in cometary comae instead.”

“By observing comet Ikeya (1963a), Stawikowski and Greenstein [134] recorded intensities of the emission lines of the Swan bands 12C2 and 12C13C to calculate the 12C/13C ratio; they found a value of 70 ± 15. On the Earth, this ratio is ∼90. Stawikowski and Greenstein thus concluded that cometary material could have come from the same region of the solar nebula as did the Earth or from interstellar matter.”

“13CN rotational lines in the R-branch, which is located in the visible (violet) spectral range. The authors determined a 12C/13C ratio of 65 ± 9. Later, however, the validity of these data was called into question [138], and values of 95 ± 12 were reported for the rotational lines in the R-branch [139]”

“The 12C/13C ratio was found to be 111 ± 12 for HCN, which is consistent with the Solar System values [140]. The authors point to the fact that the interstellar medium exhibits, according to investigations by Wilson and Rood [141], a 12C/13C isotope ratio of 77 ± 7; thus, an interstellar origin for comet Hale-Bopp was excluded by Jewitt et al. [140].”

“Hawaiian JCMT study of comet Hale-Bopp, Jewitt et al. [140] moreover distinguished the nitrogen isotopes 14N and 15N in hydrogen cyanide, HCN. For the determination of the ratio, the area of a different hyperfine component line for HC15N at 344.2003 GHz was quantified; this measurement yielded an HC14N/HC15N ratio of 323 ± 46. According to the authors, this value suggests a Solar System origin, the ratio of which is given in the literature as 270 [144] or 272 for atmospheric nitrogen [133]; however, the identified value was also consistent with the interstellar medium, which has 14N/15N ≈ 460 ± 100 [145].”

“For all comets, regardless of their origin or heliocentric distance, a remarkably constant 14N/15N value of 147.8 ± 5.7 was recorded. The authors indicated that this finding supports fractionation in the early Solar System and a common origin for comets.”

“The low 14N/15N ratios in HCN and the CN and NH2 radicals, however, suggest fractionation in the early Solar System and a common origin for the comets.”

“According to the Vienna Standard Mean Ocean Water (VSMOW), terrestrial water exhibits a strict and stable deuterium-to-hydrogen (D/H) ratio of 1.558·10−4, with an error of 0.001·10−4. The VSMOW 18O/16O ratio is 2.01·10−3.”

“In six Oort cloud comets, including C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp) [4], the D/H ratio has been determined to have the relatively high value of (2.96 ± 0.25)·10−4. This value is twice the value of terrestrial water.”

“Carbonaceous chondrites with asteroid parent bodies have been observed to have the low D/H ratio of (1.4 ± 0.1)·10−4.”

“comet 103P/Hartley 2 “…”Jupiter-family comet that is believed to originate from the Kuiper belt.” … “Difficulties in explaining the low D/H ratio in the water vapor of comet 103P/Hartley remain. One possible explanation includes large-scale mixing of material between the inner and outer Solar System [7], which is expressed by radial mixing of comets and asteroids that originated in different regions [8].”

“Mumma and Charnley note that isotopic exchange with H2 in the turbulent nebula would predict low D/H ratios for comets formed close to the orbit of Jupiter and higher D/H ratios for comets formed outside the turbulent solar nebula beyond 17 AU.”

“Surprisingly, proteins in all living organisms of all domains of life on Earth exclusively use l-amino acids (!) for their molecular architecture [1]”

“Why and how was the balance tipped to the left? Very recently, this phenomenon was classified in the journal Nature as one of the five most difficult tasks to decipher that remain unsolved in the natural sciences [3]”

Modeling a Carrington-scale Stellar Superflare and Coronal Mass Ejection from κ
1Cet

Benjamin J. Lynch, 1 Vladimir S. Airapetian, 2, 3 C. Richard DeVore, 2 Maria D. Kazachenko,4 Teresa Luftinger, ¨5 Oleg Kochukhov, 6 Lisa Rosen, ´6 and William P. Abbett1

https://arxiv.org/pdf/1906.03189.pdf

Page 1: “The cumulative effects of both steady-state and extreme space
weather from active stars, including intense X-ray and extreme ultraviolet (EUV) radiation, large fluxes of highly energetic particles, and frequent exoplanet interactions with stellar coronal mass ejections (CMEs), will have a significant impact on the exoplanets’ atmospheric evolution, and ultimately on their habitability “(Lammer
et al. 2007, 2009; Drake et al. 2013; Osten & Wolk 2015;
Kay et al. 2016; Airapetian et al. 2019b).

Page 2: “younger stars exhibit greater maximum flare energies and higher flare
frequencies” (Maehara et al. 2012; Notsu et al. 2013, 2019; Shibayama et al. 2013).

Oumuamua_SolarSystemObject

The Interstellar Object ‘Oumuamua as a Fractal Dust Aggregate

Eirik G. Flekkøy1Jane Luu2,3, and Renaud Toussaint1,4

https://iopscience.iop.org/article/10.3847/2041-8213/ab4f78 or https://arxiv.org/abs/1910.07135

“Oumuamua exhibited a nongravitational acceleration that appeared inconsistent with cometary outgassing, leaving radiation pressure as the most likely force”

“a fractal body with the ultra-low density of 10−2 kg m−3.”

Discovery of fossil asteroidal ice in primitive meteorite Acfer 094

  1. Megumi Matsumoto1,*,,
  2. Akira Tsuchiyama2,3,
  3. Aiko Nakato1,,
  4. Junya Matsuno1,
  5. Akira Miyake1,
  6. Akimasa Kataoka4,
  7. Motoo Ito5,
  8. Naotaka Tomioka5,
  9. Yu Kodama6,
  10. Kentaro Uesugi7,
  11. Akihisa Takeuchi7,
  12. Tsukasa Nakano8 and
  13. Epifanio Vaccaro9
  1. 1Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan.

  2. 2Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan.

  3. 3Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, GD 510640, China.

  4. 4National Astronomical Observatory of Japan, Tokyo 181-8588, Japan.

  5. 5Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kochi 783-0093, Japan.

  6. 6Marine Works Japan Ltd., Kanagawa 237-0063, Japan.

  7. 7Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan.

  8. 8Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8567, Japan.

  9. 9Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK.
  1. *Corresponding author. Email: m_matsumto@tohoku.ac.jp
  •  Present address (primarily responsible for media coverage): Department of Earth and Planetary Materials Science, Tohoku University, Miyagi 980-8578, Japan.

  •  Present address: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa 252-5210, Japan.

“UPLs ( ultraporous lithology) with abundant pores are fragile. UPLs are porous aggregates of amorphous and crystalline silicates, Fe─Ni sulfides, and organics. Nevertheless, UPLs show no evidence for pore compaction (Fig. 3A), which would be expected to have occurred during accretion.”

Extraterrestrial ribose and other sugars in primitive meteorites

Yoshihiro FurukawaYoshito ChikaraishiNaohiko OhkouchiNanako O. OgawaDaniel P. Glavin,Jason P. DworkinChiaki Abe, and Tomoki Nakamura

“The mineralogy and IOM structure of NWA 801 indicate that aqueous alteration of this meteorite was very limited. Thus, sugars in NWA 801 could have been formed before accretion of the CR2 parent body or during an early parent body aqueous alteration stage”

Impact crater data analysis of Ryugu asteroid illuminates complicated geological history

Assistant Professor Naoyuki Hirata of the Department of Planetology at Kobe University’s Graduate School of Science

„Through analyzing the location patterns and characteristics of the craters, they determined that the asteroid’s eastern and western hemispheres were formed at different periods of time.“

„. It is thought that this ridge formed in the distant past during a period when it only took Ryugu 3 hours to rotate. As the eastern hemisphere and western hemisphere were formed at different periods of the asteroid’s history- this suggests that there have been at least two instances where Ryugu’s rotational speed has increased.” – See also Nowadays: Sunlight still makes asteroids spin in strange ways at http://www.spacedaily.com/news/asteroid-03q.html

49 Ceti atomic carbon gas 10 times more than previously estimated Dr. Aya Higuchi

49Ceti_Aya_Higuchi

Grit

December 14, 2017

Distractors:

  • New ideas and Projects (Passion)

 

Focus:

  • Set one Goal, choose later another one (Passion)
  • Maintaining Focus on Projects that take more than a few months (Passion)
  • Interests change from year to year (Passion)
  • Obsessed with a certain idea or Project but lost interest after short time (Passion)

 

Stamina / Crisis Management:

  • No discourage through setbacks (Perseverance)
  • I finish whatever I begin (Perseverance)
  • Diligent, never give up (Perseverance)
  • Overcoming setbacks to conquer an important challenge (Perseverance)

 

Effort / Energy:

  • Hard working (Perseverance)

 

Grit has two components:

Passion

Perseverance

If the Yin-Yang philosophy is used:

Yin = Passion

Yang = Perseverance

They should nourish each other. A yin weakness or yang weakness should show up accordingly. In case any of the weaknesses is overcome successfully it should have an Impact on the grit score of Angela Lee Duckworth.

Would be interesting to measure the grit score at the beginning of a systemic disease and later when TCM treatment had an impact.

 

 

SuccessFactors Foundation Key Features Mindmap

October 26, 2017

SuccessFactorsFoundationKeyFeatures

SuccessFactors Foundation is key for all the SuccessFactors Modules.
It includes Reproting, the Job Profile Builder, the Home Page, the Employee Profile as well as some other key Features.

There are more key features mindmaps for SuccessFactors:

101 Free Tips, Tricks & Step by Step Guides for SAP SuccessFactors Employee Central

✓ SuccessFactors Learning ✓ Features Mindmap

➀ ➁ ➂ ➃ ➄ Success Factors Employee Central Payroll Features Mindmap ➅ ➆ ➇ ➈ ➉

❶❼0❽ Q➌ 2017 Ұ ₴ $ SAP SuccessFactors Compensation ₰ ¢ ₤ Release New Enhancements

✽ SAP ✾ SuccessFactors ✿ Succession ❀ and ❁ Development ❃ Features ❋

€ £ Ұ ₴ $ SAP SuccessFactors Compensation ₰ ¢ ₤ ¥ ₳ ₲ ₪ ₵ 元 Features Mindmap

❶❼0❽ Q➌ 2017 Employee Central Release New Enhancements

➹ Performance and Goal Alignment within in Your Organizations ♔ – The SAP SuccessFactors Performance & Goals Key Features Mindmap

☑ The SAP SuccessFactors Workforce Analytics Features Mindmap

👉 The 6 Phases of the SAP Activate Methodology for New Cloud Implementations with Their 44 Results All on One Page ☺

♕ SuccessFactors Onboarding: Speed up The Onboarding of Your ❀ Precious New Employees and Make Them ♥ Love Your Company With These ➌➎ Features ☺ YES ☑

✅ 12 Features in the SAP SuccessFactors Recruiting Marketing that Will Help You to Optimize Your Recruiting.

SAP SuccessFactors Compensation Overview Navigation Mind Map

Overview of SuccessFactors Employee Central Features in a Mindmap

☞ This Mindmap of SAP SuccessFactures Recruiting Managment will show you the 32 Features on one page

 

 

 

101 Free Tips, Tricks & Step by Step Guides for SAP SuccessFactors Employee Central

October 3, 2017

By Peter Palme
This list of free tips, ticks & guides is for all HR Administrators and HR Systemadministrators. I hope it will benefit you and your work with SAP SuccessFactors.
I will be working on this list continuously. I will grow this list over the next few weeks.

Settings

How to Switch the Language of the SAP SuccessFactors Interface?
In this example I will show you how to change the language from English to French.
Just follow the same steps for any other language that is available in your SAP SuccssFactors Employee Central System. Just click on the Image below to view the
guide.

 

Searches

How to Search for an Inactive Employee in SAP SuccessFactors Employee Central?

I have created a guide and a cheat sheet. Please click on the Image to view.
HowtoSearchInactiveEmployeeLinkedinPost

 

Hire

Save
How to save a draft when hiring an employee in Employee Central when the
add new employee process cannot be completed?
Follow this guide.

Hire Date Change
How to Change the Hire Date of an Employee?
In this guide it is done within employee central and without the Need to import again the user data. Follow this link.

How to add multiple Employments for an Employee?
Follow this link.

 

Rehire

Just click on the Image below to view the guide and cheat sheet.

RehireEmployeeLinkedin

Same Effective Date: Termination and Rehire
Follow this guide.

Data Changes

Address
How to Change the Personal Address in Employee Central?
Click the link for the guide and quick help Card.

LinkedinAddressChange

User Name
How to change the username of an employee?
Follow this guide.

 

Offboarding

Termination
How to Terminate an Employee?
In this example I send an HR employee in early retirement – wishful thinking :-)?
Please click in the Image below to open the guide.
TerminationLinkedin

Change the Termination Date
Please click on the Image below to view the step by step guide.

ChangeTerminationDateLinkedin

Delete the Termination Date
Please click on the Image below to view the step by step guide.

 

 

 

How to Change, Correct or Remove the Termination Date ?
Please follow this link.

Global Assignment

Total Report Count
Please watch out for the total Report coutnt in OrgChart.
Read this article.

 

Salient

Proxy

How to Proxy as Another User?
Please click on the Image below to view the guide.
Proxy

How to Give Procy Rights to Another User for Your Profile?
Just click the Image below to open the guide.
GrantProxyLinkedin

 

Emplyoee Self Service

Time-Off Request
How to request time off in employee central?
Just click on the image to open the step by step guide.

RequestTimeOffLinkedin

 

Manager Self Service

 

Administration

Data Import
Employee Data Import Steps
Please see this guide.

How to Import employee data?
Follow this link.

Mass Changes
How to do mass changes in Employee Central
Here is the Manual.

Upgrade Center
Please note users with access permission to the Admin Center have
access to the upgrade center.
Please see this post about the implication this has.

Compensation Information

Pay Components
How to manage Pay Components Groups?
See this guide.

Meta Data Framework

MDF Object
How to manually create or add data for an MDF object?
Follow these instructions.

Custom Foundation Object
How to create a custom foundation object?
Here is the manual.

Custom Field
How to create a custom field for a MDF Object?
Please use this guide.

 

Reporting

Advanced Reporting
Please use this guide.

 

Audit

Audit Framework
Please see this page.

 

SuccessFactors Support

SuccessFactors Community
How to access the successfactors community
Please follow this guide.

Incident Prioritization
When to choose the P1, P2 or P3 category?
Follow this advice.

SAP ONE Support Launchpad
Email and Password required
Link.

Schedule an SAP SuccessFactors Expert
Customer with SuccessFactors Preferred Care can
schedule 30 minutes sessions.
Follow this link.

Independent Support Groups

Global SuccessFactors and SAP Community Linkedin Group
Group Owner: Jarret Pazahanick
Click here.


Global SAP and SuccessFactors Community Linkedin Group
Group Owner: Jarret Pazahanick
Click here.
 
Slack SuccessFactors Group
Group Moderator: Chad Eati
sapsfsf.slack.com

 

Implementation Employee Central Tips & Tricks

Overview
Tips & Tricks for the implementation from Support
Please see this page.

Foundation Objects
Take a look at this guide.

Data Models
Please follow this link.

Business Rules
Please see this guide.

Workflows
Follow this manual.

Event Derivation or Manual Event Reasons Selection
A post by Josef Sysel explaining which Option to choose:
See here.

Business Phone Restricting Editing Rights
How to restrict employees from editing the buinsess phone in Employee Central?
Follow this guide from Sandip Biswas.

Propagation Employee Class from Position to Job Information
Please follow this advice.

Position Management
FAQ on Position Management.
Click here.


%d bloggers like this: